新溪-gordon
V2025.05
  • 书籍
    • 书
      • 2021年看的书
        • 图解密码技术
        • Deep learning with Python
        • 网络是怎么连接的
        • 微服务设计
        • 微服务设计原理与架构
        • 微服务治理: 体系、架构及实践
        • TCP/IP ILLustrated Volume 1: The Protocols
        • SRE
        • The Site Reliability Workbook
        • Bitcoin and Cryptocurrency Technologies
        • 其他
      • 详情
        • 编码实践
        • 设计模式
        • 工程实践
        • 领域驱动设计
        • 产品与需求
        • 开发文化
        • 管理
        • 科幻小说
        • 其他相关
    • 要看的书
      • 经典书
        • IT Core
        • 编译原理
        • 组成原理
        • IT 设计
        • 管理
      • AI 相关
        • 推荐系统
      • IT相关
        • 区块链
        • 统计
        • 网络
        • 实时协同
      • 方法论
      • 小说
        • 科幻小说science fiction
      • 书籍来源
        • 极客来源
      • 数学基础
      • 语言经典
        • C 语言
      • 计算机经典
      • 计算机语言设计
      • 其他
    • ai
      • Microsoft: AI-For-Beginners
        • I Introduction to AI
        • II Symbolic AI
        • III Introduction to Neural Networks
        • IV Computer Vision
        • V. NLP
        • VI. Other
        • VII. Ethics
      • Microsoft: Machine Learning for Beginners
        • 1. Introduction
        • 2. Regression
        • 3. Web-App
        • 4. Classification
        • 5. Clustering
        • 6. NLP
        • 7. TimeSeries
        • 8. Reinforcement
        • 9. Real-World
      • Microsoft: Generative AI For Beginners
        • 第一章: 简介
        • 第二章: 不同的 LLMs对比
        • 第三章: AI安全
        • 第四章: 提示工程基础
        • 第五章: 提示工程进阶
        • 第八章: 创建搜索应用
      • Getting Started with OpenCV
      • Microsoft Learn: Introduction to PyTorch
        • 简介
      • Microsoft Learn: Introduction to NLP with PyTorch
        • 简介
        • 2. Representing text as Tensors
        • 3. Bag-of-Words and TF-IDF representations
        • 4. Embeddings
      • HuggingFace: Learn
      • Kaggle Learn
        • Intermediate Machine Learning
        • Intro to Deep Learning
        • 参考
      • scikit-learn 1.3.2
      • Build a Large Language Model (From Scratch)
        • 1. Understanding LLM
        • 2. Working with Text Data
        • 3. Coding Attention Mechanisms
        • 4 Implementing a GPT model from Scratch To Generate Text
        • 5 Pretraining on Unlabeled Data
        • 6 Fine-tuning for classification
        • 7 Fine-tuning to follow instructions
        • Appendix A. Introduction to PyTorch
        • Appendix B. References and Further Reading
        • Appendix C. Exercise Solutions
        • Appendix D. Adding Bells and Whistles to the Training Loop
        • appendix E Parameter-efficient fine- tuning with LoRA
        • 其他
      • 动手学深度学习(Dive into Deep Learning)
        • 前言
        • Part 1: Basics and Preliminaries
        • Part 2: Modern Deep Learning Techniques
        • Part 3: Scalability, Efficiency, and Applications
    • 架构相关
      • 微服务设计原理与架构
        • 微服务建模
        • 服务拆分与集成
        • 微服务架构关键要素
        • 参考
      • 领域驱动设计精粹
        • 第 2 章 运用限界上下文与通用语言进行战略设计
        • 第 3 章 运用子域进行战略设计
        • 第 4 章 运用上下文映射进行战略设计
        • 第 5 章 运用聚合进行战术设计
        • 第 6 章 运用领域事件进行战术设计
        • 第 7 章 加速和管理工具
      • 实现领域驱动设计
      • 领域驱动设计
    • 优化相关
      • 性能之巅
        • 书评
    • 协议相关
      • UNIX 网络编程卷1
        • 第1章 简介
        • 第2章 传输层: TCP, UDP和SCTP
        • 第3章 套接字编程简介
        • 第4章 基本TCP套接字编程
        • 第5章 TCP客户/服务器程序示例
        • 第6章 I/O复用: select和poll函数
        • 第7章 套接字选项
        • 第8章 基本UDP套接字编程
        • 第9章 基本SCTP套接字编程
        • 第11章 名字与地址转换
        • 第12章 IPv4与IPv6的互操作性
        • 第13章 守护进程和inetd超级服务器
        • 第14章 高级I/O函数
        • 第15章 Unix域协议
        • 第16章 非阻塞式I/O
        • 第17章 ioctl操作
        • 第18章 路由套接字
        • 第19章 密钥管理套接字
        • 第20章 广播
        • 第21章 多播
        • 第22章 高级UDP套接字编程
        • 第23章 高级SCTP套接字编程
        • 第24章 带外数据
        • 第25章 信号驱动式I/O
        • 第26章 线程
        • 第27章 IP选项
        • 第28章 原始套接字
        • 第29章 数据链路访问
        • 第30章 客户/服务器程序设计范式
        • 附录A IPv4, IPv6, ICMPv4和ICMPv6
        • 其他
      • TCP/IP 详情-卷1
        • 第1章 概 述
        • 第2章 链 路 层
        • 第3章 IP:网际协议
        • 其他
      • TCP:IP 详情卷1-第2版
        • 第1章 概 述
    • 边缘相关
      • 雾计算与边缘计算: 原理及范式
      • 边缘计算入门 20 课
        • 第 01 课: 边缘计算深度调研
        • 第 02 课: 云走向边缘, 云将无处不在
        • 第 03 课: 信通院-边缘计算发展现状与趋势展望
        • 第 04 课: EdgeRec: 边缘计算在推荐系统中的应用
        • 第 05 课: 阿里云边缘云原生应用实践应用实践
        • 第 06 课: KubeEdge 子项目 Sedna 0.1 发布
        • 第 07 课: 用 SuperEdge 统管边缘设备和机器
        • 第 08 课: 如何使用 k8s 管理 10 万边缘节点
        • 第 09 课: 边云协同-打通 AI 最后一公里
        • 第 10 课: 用 edgeadm 一键安装边缘 K8s 集群
        • 第 11 课: 基于 KubeEdge 实现 10086 客服云边协同平台
        • 第 12 课: Volcano 架构设计与原理
        • 第 13 课: 一文读懂 SuperEdge 的云边隧道
        • 第 14 课: 打破内网壁垒-从云端一次添加上千边缘节点
        • 第 15 课: 一文读懂 SuperEdge 边缘容器架构与原理
        • 第 16 课: 2020 十大边缘计算开源项目
        • 第 17 课: Addon SuperEdge 让原生 K8s 管理边缘应用
        • 第 18 课: SuperEdge 云边隧道新特性
        • 第 19 课: 《深入理解边缘计算》
        • 第 20 课: FabEdge 边缘网络方案
        • 第 21 课: 边缘计算云原生开源方案选型比较
        • 参考
      • 边缘计算方法与工程实践
        • 第1章 边缘计算综述
        • 第2章 边缘计算基础资源架构技术
        • 第3章 边缘计算软件架构
        • 第4章 边缘计算安全管理
        • 第5章 边缘计算应用案例
        • 第6章 边缘计算发展展望
    • 物联网相关
      • 图解物联网
        • 第1章 物联网的基础知识
        • 第 2 章 物联网的架构
        • 第 3 章 物联网设备
        • 第 4 章 先进的感测技术
        • 第 5 章 物联网服务的系统开发
        • 第 6 章 物联网与数据分析
        • 第 7 章 物联网与可穿戴设备
        • 第 8 章 物联网与机器人
      • 物联网设计
        • 第一部分 原型阶段
      • 自己动手设计物联网
    • 编程语言相关
      • C 程序设计
  • 极客时间
    • [重要]编程基础
      • 深入浅出计算机组成原理
        • 指令和运算
        • 处理器
        • 书籍
      • 网络编程实战
        • 第一模块: 基础篇
        • 第二模块: 提高篇
        • 第三模块: 性能篇
        • 第四模块: 实战篇
        • 结束语
      • 趣谈 Linux 操作系统
        • 第二部分 系统初始化 (4 讲)
        • 第三部分 进程管理 (10 讲)
        • 第四部分 内存管理 (7 讲)
        • 第五部分 文件系统 (4 讲)
        • 第六部分 输入输出系统 (5 讲)
        • 第七部分 进程间通信 (7 讲)
        • 第八部分 网络系统 (7 讲)
        • 第九部分 虚拟化 (7 讲)
        • 第十部分 容器化 (4 讲)
        • 实战串讲篇 (9 讲)
        • 学习攻略
      • 编译原理实战课
        • 语法分析
        • 语义分析
        • 运行时机制
        • 中间代码 IR
        • 代码优化
        • 代码生成
        • 解析树和 AST 的区别
        • Golang
        • Erlang
        • 并发
        • 元编程-Meta-Programming
        • 泛型
        • 函数式编程
        • 远程办公
        • 如何学习
        • 收集
        • 参考
      • 操作系统实战
        • 整体设计
        • 程序的基石:硬件
        • 同步原语
        • 参考
      • 手把手带你写一门编程语言
        • 开篇
        • 词法分析
        • 语法分析
        • 语义分析
      • 计算机基础实战课
        • 课程设计
        • 01以史为鉴 (3讲)
        • 02硬件-芯片(手写mini CPU) (9讲)
        • 03环境准备 (2讲)
        • 04语言与指令 (9讲)
        • 05应用与内存 (8讲)
        • 06国庆策划 (3讲)
        • 07IO与文件 (6讲)
        • 08综合应用 (6讲)
        • 09结束语 (4讲)
        • 10技术雷达 (5讲)
    • 架构相关
      • 左耳听风-陈皓
        • 程序员如何用技术变现
        • 05 _ 何为技术领导力
        • 06 _ 如何才能拥有技术领导力
      • 许式伟的架构课
        • 编程语言
        • 操作系统
        • 外置存储
        • 需求分析
        • 详细设计
        • 导致故障的因素
        • 软件架构
        • 架构设计文档
        • 软件质量管理
        • 软件工程
        • 架构设计的优劣
        • 参考
      • 软件工程之美
        • 软件工程之美summary
        • 软件工程之美
        • 基础理论 (9 讲)
        • 需求分析篇
        • 系统设计篇
        • 开发编码篇 (7 讲)
      • 设计模式之美
      • DDD 实战课
        • 开篇词
        • 基础篇 (5 讲)
        • 02进阶篇 (6 讲)
        • 03实战篇 (10 讲)
        • 结束语
      • 架构实战案例解析
        • 01概述篇 (2 讲)
        • 02业务架构篇 (9 讲)
        • 03技术架构篇 (9 讲)
        • 总结篇 (2 讲)
      • 乔新亮的 CTO 成长复盘
        • 00开篇词
        • 01对个人认知的复盘 (6 讲)
        • 02对管理工作的复盘 (10 讲)
        • 03对专业成长的复盘 (10 讲)
        • 结束语
      • 如何落地业务建模
        • 开篇词
        • 旧约: “前云时代” 的领域驱动设计 (11 讲)
        • 深度答疑专题 (4 讲)
        • 新约: 云时代的业务建模 (2 讲)
      • 郭东白的架构课
        • 我的收获
        • 课程设计
        • 00开篇词|没有战略意图,就成不了一个顶尖的架构师
        • 01模块一:生存法则 (15 讲)
        • 02模块二:创造价值 (21讲)
        • 03模块三:职业成长 (9讲)
        • 04模块四:思考力 (11讲)
        • 05结束语
        • 06加餐
      • 李智慧 · 高并发架构实战课
    • 安全
      • 实用密码学
        • 00开篇词 _ 人人都要会点密码学
        • 01 | 学习密码学有什么用
        • 02 | 单向散列函数: 如何保证信息完整性
        • 03 | 如何设置合适的安全强度
        • 04 | 选择哈希算法应该考虑哪些因素
        • 05|如何有效避免长度延展攻击
        • 06|对称密钥: 如何保护私密数据
        • 07 | 怎么选择对称密钥算法
        • 09 | 为什么ECB模式不安全
        • 10 | 怎么防止数据重放攻击CBC
        • 11 | 怎么利用解密端攻击
        • 12 | 怎么利用加密端攻击
        • 13 | 如何防止数据被调包
        • 14 | 加密数据能够自我验证吗
        • 15 | AEAD 有哪些安全陷阱
        • 16 | 为什么说随机数都是骗人的
        • 17 | 加密密钥是怎么来的
        • 18 | 如何管理对称密钥
        • 19|量子时代,你准备好了吗
        • 结束语
      • Web 安全攻防实战
        • 1. 前端基础
        • 2. Web安全之后端安全
    • 测试相关
      • 接口测试入门课
        • 点评
        • 开篇词 | 把接口测试这件小事做深/做透
        • 01 | 基础: 跳出细节看全局
        • 02 | 方法论: 没有任何文档, 怎么才能快速了解接口的信息
      • 程序员的测试课
        • 开篇词
        • 基础篇 (11 讲)
        • 应用篇 (5 讲)
        • 03扩展篇 (2 讲)
        • 结束语
      • 软件测试 52 讲
        • 01测试基础知识篇 (11讲)
        • 02GUI自动化测试篇 (10讲)
        • 03API自动化测试篇 (3讲)
        • 04代码测试篇 (3讲)
        • 05性能测试篇 (7讲)
        • 06测试数据准备篇 (4讲)
        • 07测试基础架构篇 (4讲)
        • 08测试新技术篇 (5讲)
        • 09测试人员的互联网架构核心知识篇 (5讲)
        • 10特别放送篇 (8讲)
    • 云原生
      • 容器实战高手课
        • Namespace
        • Cgroups
        • Linux Kernel
        • Load Average
        • Memory Cgroup
        • 存储
        • Network
        • 容器安全
        • k8s
        • 思考
    • 管理&长成
      • 跟着高手学复盘
        • 01基础概念篇 (3 讲)
        • 02实操流程篇 (9 讲)
        • 03实战案例篇 (7 讲)
        • 结束语
        • 春节荐书
      • 程序员进阶攻略
        • 启程
        • 修炼
        • 修行
        • 徘徊
        • 寻路
        • 蜕变
      • 10x 程序员工作法
        • 思考框架
        • 四个思考原则
        • 总结
        • 一. 以终为始
        • 二. 任务分解
        • 三. 沟通反馈
        • 四. 自动化
        • 五. 综合运用
        • 好书推荐
        • 提问
      • 大厂晋升指南
        • 晋升原则
        • 晋升逻辑
        • 能力模型
        • 职级档次
        • P7
        • P8
        • P9
        • P10/P11
        • 面评技巧-PPT框架
        • 面评技巧-PPT 讲解
        • 面评技巧-PPT 答辩
        • 面评技巧-注意点
        • 面评技巧-技术大会
        • 面评技巧-其他
        • 学习方法-指导原则
        • 学习方法-找时间:海绵学习法
        • 学习方法-学什么:三段分解法
        • 学习方法-怎么学
        • 学习方法-保证效果
        • 做事方法-总
        • 做事方法-KPI&OKR
        • 做事方法-3C 方案设计法
        • 做事方法-PDCA执行法
        • 做事方法-5W根因分析法
        • 做事方法-5S 问题处理法
        • 做事方法-4D 总结法
        • 做事方法-金字塔汇报法
        • 做事方法-四线复盘法
        • 专项提升-业务
        • 专项提升-业务:5W1H8C1D 分析法
        • 专项提升-业务:AARRR 漏斗模型
        • 专项提升-业务:宝洁战略模型
        • 专项提升-管理
        • 专项提升-管理:管理四象限
        • 专项提升-管理:管理五模式
        • 别人的心得
        • 其他
        • 10000小时定律
        • 领域分层图
        • 参考
        • 其他
    • 数据分析
      • 数据分析实战 45 讲
        • 思维导图
        • 开篇词 | 你为什么需要数据分析能力
        • 01基础篇 (16 讲)
        • 02算法篇 (20 讲)
        • 03实战篇 (7 讲)
        • 04工作篇 (2 讲)
        • 结束语
      • 数据分析思维课
        • 思维导图
        • 00开篇词 (2 讲)
        • 01数据分析基础 (11 讲)
        • 02数据算法基础 (9 讲)
        • 03如何用数据说话 (6 讲)
        • 04分析工具 (5 讲)
        • 05特别放送 (6 讲)
        • 其他
    • AI 相关
      • 人工智能基础课
        • 数学基础
        • 机器学习
      • 推荐系统三十六式
        • 内容推荐
        • 近邻推荐
        • 矩阵分解
        • 个人成长
      • AI 大模型之美
        • 课前必读 (2 讲)
        • 基础知识篇: 探索大型语言模型的能力 (8 讲)
        • 实战提高篇一: 利用NLP技术完成高级任务 (10讲)
        • 实战提高篇(二) 大型语音与图像模型的应用 (9讲)
        • 扩展
      • 机器学习 40 讲
        • 01机器学习概观 (10 讲)
        • 02统计机器学习模型 (18 讲)
        • 03概率图模型 (14 讲)
      • PyTorch 深度学习实战
        • 开篇词 | 如何高效入门 PyTorch
        • 01基础篇 (5 讲)
        • 02模型训练篇 (12 讲)
        • 03实战篇 (9 讲)
        • 加餐| 基础模型
        • 结束语| 人生充满选择, 选择与努力同样重要
      • 零基础 GPT 应用入门课
        • 开篇词
        • 基础速通 (3讲)
        • 黄金密钥 (7讲)
        • 综合实战 (6讲)
      • AI 大模型系统实战
        • 热身篇 (4讲)
        • 架构基础篇 (6讲)
        • 技术原理篇 (5讲)
      • AI 绘画核心技术与实战
        • 开篇词 (2讲)
        • 热身篇:AI 绘画初体验 (4讲)
        • 基础篇:AI 绘画原理揭秘 (9讲)
        • 进阶篇:从 DALL-E 2 到 Stable Diffusion (5讲)
        • 综合演练篇:AI 绘画高手养成计划 (8讲)
      • 零基础实战机器学习
        • 08 | 模型优化1: 怎么用特征工程提高模型效率
    • 区块链
      • 说透区块链
        • 数字人民币
        • 书籍
    • 代码精进
      • 代码之丑
        • 开篇词
        • 13 类典型坏味道 (13 讲)
        • 延伸阅读 (4 讲)
        • 参考
      • 软件设计之美
        • 软件设计之美
      • 代码精进之路
        • 01第一模块: 代码 “规范” 篇 (16 讲)
        • 02第二模块: 代码 “经济” 篇 (14 讲)
        • 03第三模块: 代码 “安全” 篇 (14 讲)
    • 编程语言
      • Go 语言核心 36 讲
      • TonyBai Go语言第一课
        • 课程设计
        • 00开篇
        • 01入门篇: 勤加练手 (7 讲)
        • 02基础篇: “脑勤” 多理解 (20 讲)
        • 03核心篇: “脑勤 +” 洞彻核心 (5 讲)
        • 04实战篇: 打通“最后一公里” (4讲)
        • 大咖助阵
        • 加餐
        • 泛型
      • Python 核心技术与实战
    • 产品&运营
      • 梁宁-产品思维 30 讲
        • 发刊词
        • 模块一: 同理心
        • 模块二: 机会判断
        • 模块三: 系统能力
        • 模块四: 用户体验
        • 模块五: 创新模式
        • 产品世界观
        • 彩蛋
        • 参考
    • 面试
      • 后端工程师的高阶面经
        • 开篇词
        • 01微服务架构 (10讲)
        • 数据库与MySQL (13讲)
        • 消息队列 (10讲)
        • 缓存 (9讲)
        • NoSQL (5讲)
        • 结束语
    • 软件工程
      • 说透敏捷
        • 开篇词
        • 原理篇 (2 讲)
        • 实战篇 (4 讲)
        • 策略篇 (2 讲)
        • 管理篇 (2 讲)
        • 结束语
    • 其它
      • 互联网人的英语私教课
        • KSA
        • 独立主格结构
        • 介词
        • 收集
        • 关键英语
        • 并列句 VS 复杂句
        • 单词
        • 英语谚语
        • 常用短语
        • 口语专用词汇
        • 好的英文网站
        • 其他
        • 会不会阅读
        • 词汇学习
        • paraphrase
        • 动词
        • 其他
        • 参考
      • 从 0 打造音视频直播系统
        • WebRTC 1 对 1 通话 (23 讲)
        • WebRTC 多人音视频实时通话 (7 讲)
        • 支持上万人同时在线的直播系统 (8 讲)
        • 其他
      • 快手·音视频技术入门课
        • 开篇基础 (4讲)
        • 流媒体技术速成 (5讲)
        • FFmpeg API 应用 (4讲)
        • FFmpeg 社区“玩法” (2讲)
        • 结束语 | 音视频技术更宠爱脚踏实地的人
      • 攻克视频技术
        • 图像基础和前处理 (3 讲)
        • 视频编码 (5讲)
        • 参考
        • 评论
      • 搞定音频技术
        • 音频基础 (4 讲)
        • 02音频降噪 (2 讲)
        • 03回声消除 (2 讲)
        • 04音频网络传输 (3 讲)
        • 05空间音频 (2 讲)
        • 06音频特效生成与算法 (3 讲)
      • 专利写作第一课
        • 开篇词 | 写专利, 将是知识工作者的核心产出
        • 01 _ 为什么我推荐互联网人要积极写专利
        • 02 _ 奖金是专利写作中最不值得一提的事儿
        • 03 _ 找到KeyPerson利益点, 提升专利通过率
        • 04 _ 像写PRD一样, 撰写专利交底书1
        • 05 _ 像写PRD一样, 撰写专利交底书2
        • 06 _ 如何把常见的生活问题变成专利(案例-节假日不响起闹钟)
        • 07 _ 专利创新的步伐不必迈得特别大
        • 08 _ 那些异想天开的专利是怎么诞生的
        • 答疑 _ 专利申请十大常见问题
      • WebAssembly 入门课
        • 课前必读
        • 01核心原理篇 (6 讲)
        • 02应用篇 (6 讲)
        • 03实战篇 (6 讲)
      • 其他
  • Matter 协议
    • Matter Core
      • Chapter 1. Introduction
      • Chapter 2. Architecture
        • 2.1. Overview
        • 2.2. Layered Architecture
        • 2.3. Network Topology
        • 2.4. Scoped names
        • 2.5. Identifiers
        • 2.6. Device identity
        • 2.7. Security
        • 2.8. Device Commissioning
        • 2.9. Sleepy End Device (SED)
        • 2.10. Data Model Root
        • 2.11. Stack Limits
        • 2.12. List of Provisional Items
      • Chapter 3. Cryptographic Primitives
      • Chapter 4. Secure Channel
        • 4.1. General Description
        • 4.2. IPv6 Reachability
        • 4.3. Discovery
        • 4.4. Message Frame Format
        • 4.5. Message Counters
        • 4.6. Message Processing
        • 4.7. Message Security
        • 4.8. Message Privacy
        • 4.9. Message Exchanges
        • 4.10. Secure Channel Protocol
        • 4.11. Message Reliability Protocol (MRP)
        • 4.12. Unicast Communication
        • 4.13. Session Establishment
        • 4.14. Group Communication
        • 4.15. Group Key Management
        • 4.16. Message Counter Synchronization Protocol(MCSP)
        • 4.17. Bluetooth Transport Protocol (BTP)
      • Chapter 5. Commissioning
        • 5.1. Onboarding Payload
        • 5.2. Initiating Commissioning
        • 5.3. User Directed Commissioning
        • 5.4. Device Discovery
        • 5.5. Commissioning Flows
        • 5.6. Administrator Assisted Commissioning Flows
        • 5.7. Device Commissioning Flows
        • 5.8. In-field Upgrade to Matter
      • Chapter 6. Device Attestation and Operational Credentials
        • 6.1. Common Conventions
        • 6.2. Device Attestation
        • 6.3. Certification Declaration
        • 6.4. Node Operational Credentials Specification
        • 6.5. Operational Certificate Encoding
        • 6.6. Access Control
      • Chapter 7. Data Model Specification
        • 7.1. Practical Information
        • 7.2. Data Qualities
        • 7.3. Conformance
        • 7.4. Element
        • 7.5. Fabric
        • 7.6. Access
        • 7.7. Other Qualities
        • 7.8. Node
        • 7.9. Endpoint
        • 7.10. Cluster
        • 7.11. Command
        • 7.12. Attribute
        • 7.13. Global Elements
        • 7.14. Event
        • 7.15. Device Type
        • 7.16. Non-Standard
        • 7.17. Data Field
        • 7.18. Data Types
        • 7.19. Manufacturer Specific Extensions
      • Chapter 8. Interaction Model Specification
        • 8.1. Practical Information
        • 8.2. Concepts
        • 8.3. Status and Interaction
        • 8.4. Read Interaction
        • 8.5. Subscribe Interaction
        • 8.6. Report Transaction
        • 8.7. Write Interaction
        • 8.8. Invoke Interaction
        • 8.9. Common Action Information Blocks and Paths
        • 8.10. Status Codes
      • Chapter 9. System Model Specification
        • 9.1. Practical Information
        • 9.2. Endpoint Composition
        • 9.3. Interaction Model Relationships
        • 9.4. Binding Relationship
        • 9.5. Descriptor Cluster
        • 9.6. Binding Cluster
        • 9.7. Label Cluster
        • 9.8. Fixed Label Cluster
        • 9.9. User Label Cluster
        • 9.10. Access Control Cluster
        • 9.11. Group Relationship
        • 9.12. Bridge for non-Matter devices
        • 9.13. Bridged Device Basic Information Cluster
        • 9.14. Actions Cluster
        • 9.15. Proxy Architecture
      • Chapter 10. Interaction Model Encoding Specification
        • 10.1. Overview
        • 10.2. Messages
        • 10.3. Data Types
        • 10.4. Sample Cluster
        • 10.5. Information Blocks
        • 10.6. Message Definitions
      • Chapter 11. Service and Device Management
        • 11.1. Basic Information Cluster
        • 11.2. Group Key Management Cluster
        • 11.3. Localization Configuration Cluster
        • 11.4. Time Format Localization Cluster
        • 11.5. Unit Localization Cluster
        • 11.6. Power Source Configuration Cluster
        • 11.7. Power Source Cluster
        • 11.8. Network Commissioning Cluster
        • 11.9. General Commissioning Cluster
        • 11.10. Diagnostic Logs Cluster
        • 11.11. General Diagnostics Cluster
        • 11.12. Software Diagnostics Cluster
        • 11.13. Thread Network Diagnostics Cluster
        • 11.14. Wi-Fi Network Diagnostics Cluster
        • 11.15. Ethernet Network Diagnostics Cluster
        • 11.16. Time Synchronization
        • 11.17. Node Operational Credentials Cluster
        • 11.18. Administrator Commissioning Cluster
        • 11.19. Over-the-Air (OTA) Software Update
        • 11.20. Over-the-Air (OTA) Software Update File Format
        • 11.21. Bulk Data Exchange Protocol (BDX)
        • 11.22. Distributed Compliance Ledger
      • Chapter 12. Multiple Fabrics
        • 12.1. Multiple Fabrics
      • Chapter 13. Security Requirements
        • 13.2. Device vs. Node
        • 13.4. Factory Reset
        • 13.7. Threats and Countermeasures
      • Appendix A: Tag-length-value (TLV) Encoding Format
        • A.1. Scope & Purpose
        • A.2. Tags
        • A.9. Length Encoding
        • A.10. End of Container Encoding
        • A.11. Value Encodings
        • A.12. TLV Encoding Examples
      • Appendix B: Tag-length-value (TLV) Schema Definitions
        • B.1. Introduction
        • B.2. Definitions
        • B.3. Types
        • B.4. Pseudo-Types
        • B.5. Qualifiers
      • Appendix C: Tag-length-value (TLV) Payload Text Representation Format
        • C.1. Introduction
        • C.3. Examples
      • Appendix D: Status Report Messages
        • D.3. Message Format
      • Appendix E: Matter-Specific ASN.1 Object Identifiers (OIDs)
      • Appendix F: Cryptographic test vectors for some procedures
      • Appendix G: Minimal Resource Requirements
    • Matter协议分析
      • 简介
      • 算法
      • 椭圆曲线密码学 (ECC) 原理
      • Bridge
      • Factory Data
      • 安全
      • PASE
      • 配网过程
      • CASE
      • Group
      • cluster
      • OTA
      • 参考
    • chatGPT学习
      • Chapter 01 — Introduction Document
      • Chapter 02 — Architecture Document
      • Chapter 03 — Cryptographic Primitives Document
      • Chapter 04 — Secure Channel Document
      • Chapter 05 — Commissioning Document
      • Chapter 06 — Device Attestation Document
      • Chapter 07 — Data Model Document
      • Chapter 08 — Interaction Model Document
      • Chapter 09 — System Model Document
        • 概述和定义
        • 设备类型和服务类型
        • 特征
        • 系统模型实例
      • Chapter 10 — Interaction Encoding Document
        • 概述和定义
        • 数据类型
        • 交互编码格式
      • Chapter 11 — Device Management Document
        • 概述和定义
        • 设备组成
        • 设备状态
        • 设备操作
      • Chapter 12 — Multiple Fabrics Document
      • Chapter 13 — Security Requirements Document
      • Appendix A: Tag-length-value (TLV) Encoding Format
      • Appendix B: Tag-length-value (TLV) Schema Definitions
      • Appendix C: Tag-length-value (TLV) Payload Text Representation Format
      • Appendix D: Status Report Messages
  • rfc
    • RFC791: IP: INTERNET PROTOCOL
      • PREFACE
      • 1. INTRODUCTION
      • 2. OVERVIEW
        • 2.1. Relation to Other Protocols
        • 2.2. Model of Operation
        • 2.3. Function Description
        • 2.4. Gateways
      • 3. SPECIFICATION
        • 3.1. Internet Header Format
        • 3.2 Discussion
        • 3.3 Interfaces
      • APPENDIX A: Examples & Scenarios
        • minimal data carrying internet datagram
        • moderate size internet datagram (452 data octets)
        • datagram containing options
      • APPENDIX B: Data Transmission Order
      • 参考
    • RFC792: ICMP
      • 参考
    • RFC3569: An Overview of Source-Specific Multicast (SSM)
      • 1. Introduction
      • 2. Terminology
        • Any-Source Multicast (ASM)
        • Source-Specific Multicast (SSM)
        • Source-Filtered Multicast (SFM)
      • 3. The IGMP/PIM-SM/MSDP/MBGP Protocol Suite for ASM
      • 4. Problems with Current Architecture
      • 5. Source Specific Multicast (SSM): Benefits and Requirements
      • 6. SSM Framework
        • 6.1. Address Allocation
        • 6.2. Session Description and Channel Discovery
        • 6.3. SSM-Aware Applications
        • 6.4. IGMPv3/MLDv2 Host Reporting and Querier
        • 6.5. PIM-SSM Routing
      • 7. Interoperability with Existing Multicast Service Models
      • 应用
        • SSM示例
      • 参考
    • RFC4301: Security Architecture for the IP
      • 参考
    • RFC4302: IP Authentication Header
      • 参考
    • RFC4303: IP Encapsulating Security Payload (ESP)
      • 参考
    • RFC4693: Classless Inter-domain Routing (CIDR)
    • RFC3306: Unicast-Prefix-based IPv6 Multicast Addresses
      • IPv6 多播地址中前缀长度的取值范围
      • 多播地址的分配规则
        • Abstract
        • 1. Introduction
        • 2. Motivation
        • 4. Multicast Address Format
        • 6. SSM(Source-Specific Multicast Addresses)
        • 7. Examples
        • 参考
    • RFC4007: IPv6 Scoped Address Architecture
      • Abstract
      • 1. Introduction
      • 4. Address Scope
      • 5. Scope Zones
      • 6. Zone Indices
      • 7. Sending Packets
      • 8. Receiving Packets
      • 9. Forwarding
      • 10. Routing
      • 11. Textual Representation
        • Examples
      • 参考
    • RFC4291: IP Version 6 Addressing Architecture
      • 学习
        • keypoints
        • 地址类型
        • 地址分配
      • 1. Introduction
      • 2. IPv6 Addressing
        • 2.1. Addressing Model
        • 2.2. Text Representation of Addresses
        • 2.3. Text Representation of Address Prefixes
        • 2.4. Address Type Identification
        • 2.5. Unicast Addresses
      • 2.6. Anycast Addresses
      • 2.7. Multicast Addresses
        • 2.7.1. Pre-Defined Multicast Addresses
      • 2.8. A Node’s Required Addresses
      • 3. Security Considerations
      • Appendix A: Creating Modified EUI-64 Format Interface Identifiers
        • Links or Nodes with IEEE EUI-64 Identifiers
        • Links or Nodes with IEEE 802 48-bit MACs
        • Links with Other Kinds of Identifiers
        • Links without Identifiers
      • 参考
    • RFC6437: IPv6 Flow Label Specification
      • 参考
    • RFC7346: IPv6 Multicast Address Scopes
      • Abstract
      • 1. Introduction
      • 2. Definition of IPv6 Multicast Address Scopes (Updates RFC 4291)
      • 3. Definition of Realm-Local Scopes
      • 5. Definition of Realm-Local Scope for IEEE 802.15.4
      • 参考
    • RFC7707: Network Reconnaissance in IPv6 Networks
      • 参考
    • RFC8200 Internet Protocol, Version 6 (IPv6) Specification
      • 1. Introduction
        • changes from IPv4 to IPv6
        • related RFC
      • 2. Terminology
      • 3. IPv6 Header Format
      • 4. IPv6 Extension Headers
        • 4.1. Extension Header Order
        • 4.2. Options
        • 4.3. Hop-by-Hop Options Header
        • 4.4. Routing Header
        • 4.5. Fragment Header
        • 4.6. Destination Options Header
        • 4.7. No Next Header
        • 4.8. Defining New Extension Headers and Options
      • 5. Packet Size Issues
      • 6. Flow Labels
      • 7. Traffic Classes
      • 8. Upper-Layer Protocol Issues
        • 8.1. Upper-Layer Checksums
        • 8.2. Maximum Packet Lifetime
        • 8.3. Maximum Upper-Layer Payload Size
        • 8.4. Responding to Packets Carrying Routing Headers
      • 9. IANA Considerations
      • 10. Security Considerations
        • same with ipv4
        • compare with ipv4
      • 11. References
      • Appendix A. Formatting Guidelines for Options
      • Appendix B. Changes Since RFC 2460
      • 参考
    • RFC8201: Path MTU Discovery for IP version 6
      • 参考
    • RFC9293: Transmission Control Protocol (TCP)
      • 参考
    • RFC0768: User Datagram Protocol
      • 参考
    • rfc7230: HTTP/1.1: Message Syntax and Routing
      • 定义
        • hop-by-hop and end-to-end
        • Inbound and Outbound
        • head-of-line (HOL) blocking problem
        • ABNF语法
      • Abstract
      • 1. Introduction
        • 1.2. Syntax Notation
      • 2. Architecture
        • 2.1. Client/Server Messaging
        • 2.2. Implementation Diversity
        • 2.3. Intermediaries
        • 2.4. Caches
        • 2.5. Conformance and Error Handling
        • 2.6. Protocol Versioning
        • 2.7. Uniform Resource Identifiers
      • 3. Message Format
        • 3.1. Start Line
        • 3.2. Header Fields
        • 3.3. Message Body
        • 3.4. Handling Incomplete Messages
      • 4. Transfer Codings
        • 4.1. Chunked Transfer Coding
        • 4.2. Compression Codings
        • 4.3. TE
        • 4.4. Trailer
      • 5. Message Routing
        • 5.1. Identifying a Target Resource
        • 5.2. Connecting Inbound
        • 5.3. Request Target
        • 5.4. Host
        • 5.5. Effective Request URI
        • 5.6. Associating a Response to a Request
        • 5.7. Message Forwarding
      • 6. Connection Management
        • 6.1. Connection
        • 6.2. Establishment
        • 6.3. Persistence
        • 6.4. Concurrency
        • 6.5. Failures and Timeouts
        • 6.6. Tear-down
        • 6.7. Upgrade
      • 7. ABNF List Extension: #rule
      • 8. IANA Considerations
        • 8.1. Header Field Registration
        • 8.2. URI Scheme Registration
        • 8.3. Internet Media Type Registration
        • 8.4. Transfer Coding Registry
        • 8.5. Content Coding Registration
        • 8.6. Upgrade Token Registry
    • rfc7231: HTTP/1.1: Semantics and Content
    • rfc7232: HTTP/1.1: Conditional Requests
    • rfc7233: HTTP/1.1: Range Requests
    • rfc7234: HTTP/1.1: Caching
    • rfc7235: HTTP/1.1: Authentication
    • rfc9110: HTTP Semantics
      • 1. Introduction
    • rfc9111: HTTP Caching
    • rfc9112: HTTP/1.1
    • RFC9000: QUIC: A UDP-Based Multiplexed and Secure Transport
      • 参考
    • RFC9001: Using TLS to Secure QUIC
    • RFC9002: QUIC Loss Detection and Congestion Control
      • 参考
    • RFC9114: HTTP/3
      • 参考
    • RFC9204: QPACK: Field Compression for HTTP/3
      • 参考
    • RFC1035: DOMAIN NAMES-IMPLEMENTATION AND SPECIFICATION
    • RFC2782: DNS SRV
    • RFC6762: mDNS
      • 收集
      • chatGPT
        • 规范和要求
        • 实现和应用
        • 安全性
        • 性能和可扩展性
      • Abstract
      • 1. Introduction
      • 3. mDNS Names
      • 4. Reverse Address Mapping
      • 5. Querying
        • 5.1. One-Shot mDNS Queries
        • 5.2. Continuous mDNS Querying
        • 5.3. Multiple Questions per Query
        • 5.4. Questions Requesting Unicast Responses
        • 5.5. Direct Unicast Queries to Port 5353
      • 6. Responding
        • common
        • 6.1. Negative Responses
        • 6.2. Responding to Address Queries
      • 7. Traffic Reduction
      • 8. Probing and Announcing on Startup
      • 9. Conflict Resolution
      • 10. Resource Record TTL Values and Cache Coherency
      • 11. Source Address Check
      • 12. Special Characteristics of mDNS Domains
      • 13. Enabling and Disabling mDNS
      • 14. Considerations for Multiple Interfaces
      • 15. Considerations for Multiple Responders on the Same Machine
      • 16. mDNS Character Set
      • 17. mDNS Message Size
      • 18. mDNS Message Format
        • 18.1. ID (Query Identifier)
        • 18.2. QR (Query/Response) Bit
        • 18.3. OPCODE
        • 18.4. AA (Authoritative Answer) Bit
        • 18.5. TC (Truncated) Bit
        • 18.6. RD (Recursion Desired) Bit
        • 18.7. RA (Recursion Available) Bit
        • 18.8. Z (Zero) Bit
        • 18.9. AD (Authentic Data) Bit
        • 18.10. CD (Checking Disabled) Bit
        • 18.11. RCODE (Response Code)
        • 18.12. Repurposing of Top Bit of qclass in Question Section
        • 18.13. Repurposing of Top Bit of rrclass in Resource Record Sections
        • 18.14. Name Compression
        • 18.5. TC (Truncated) Bit
        • 18.6. RD (Recursion Desired) Bit
        • 18.7. RA (Recursion Available) Bit
        • 18.8. Z (Zero) Bit
        • 18.9. AD (Authentic Data) Bit
        • 18.10. CD (Checking Disabled) Bit
        • 18.11. RCODE (Response Code)
        • 18.12. Repurposing of Top Bit of qclass in Question Section
        • 18.13. Repurposing of Top Bit of rrclass in Resource Record Sections
        • 18.14. Name Compression
      • 19. Summary of Differences between mDNS and Unicast DNS
      • 20. IPv6 Considerations
      • 21. Security Considerations
      • 22. IANA Considerations
      • Appendix A. Design Rationale for Choice of UDP Port Number
      • Appendix B. Design Rationale for Not Using Hashed Multicast Addresses
      • Appendix C. Design Rationale for Maximum Multicast DNS Name Length
      • Appendix D. Benefits of Multicast Responses
      • Appendix E. Design Rationale for Encoding Negative Responses
      • Appendix F. Use of UTF-8
      • Appendix G. Private DNS Namespaces
      • Appendix H. Deployment History
      • 参考
    • RFC6763: DNS-Based Service Discovery
      • 收集
      • 1. Introduction
      • 3. Design Goals
      • 4. Service Instance Enumeration (Browsing)
        • 4.1. Structured Service Instance Names
        • 4.2. User Interface Presentation
        • 4.3. Internal Handling of Names
      • 5. Service Instance Resolution
      • 6. Data Syntax for DNS-SD TXT Records
        • 6.1. General Format Rules for DNS TXT Records
        • 6.2. DNS-SD TXT Record Size
        • 6.3. DNS TXT Record Format Rules for Use in DNS-SD
        • 6.4. Rules for Keys in DNS-SD Key/Value Pairs
        • 6.5. Rules for Values in DNS-SD Key/Value Pairs
        • 6.6. Example TXT Record
        • 6.7. Version Tag
        • 6.8. Service Instances with Multiple TXT Records
      • 7. Service Names
        • 7.1. Selective Instance Enumeration (Subtypes)
        • 7.2. Service Name Length Limits
      • 8. Flagship Naming
      • 9. Service Type Enumeration
      • 10. Populating the DNS with Information
      • 11. Domain Enumeration
      • 12. DNS Additional Record Generation
        • 12.1. PTR Records
        • 12.2. SRV Records
        • 12.3. TXT Records
        • 12.4. Other Record Types
      • 13. Working Examples
      • 14. IPv6 Considerations
      • 15. Security Considerations
      • 16. IANA Considerations
      • Appendix A. Rationale for Using DNS as a Basis for Service Discovery
      • Appendix B. Ordering of Service Instance Name Components
        • B.1. Semantic Structure
        • B.2. Network Efficiency
        • B.3. Operational Flexibility
      • Appendix C. What You See Is What You Get
      • Appendix D. Choice of Factory-Default Names
      • Appendix E. Name Encodings in the Domain Name System
      • Appendix F. “Continuous Live Update” Browsing Model
      • 参考
    • RFC8766: Discovery Proxy for Multicast DNS-Based Service Discovery
      • 参考
    • RFC2974: Session Announcement Protocol
    • RFC3261: SIP: Session Initiation Protocol
      • Abstract
      • 1 Introduction
      • 2 Overview of SIP Functionality
      • 4 Overview of Operation
      • 5 Structure of the Protocol
      • 6 Definitions
      • 7 SIP Messages
        • 7.1 Requests
        • 7.2 Responses
        • 7.3 Header Fields
        • 7.4 Bodies
        • 7.5 Framing SIP Messages
      • 8 General User Agent Behavior
        • 8.1 UAC Behavior
        • 8.2 UAS Behavior
        • 8.3 Redirect Servers
      • 9 Canceling a Request
        • 9.1 Client Behavior
        • 9.2 Server Behavior
      • 10 Registrations
        • 10.1 Overview
        • 10.2 Constructing the REGISTER Request
        • 10.3 Processing REGISTER Requests
      • 11 Querying for Capabilities
      • 12 Dialogs
        • 12.1 Creation of a Dialog
        • 12.2 Requests within a Dialog
        • 12.3 Termination of a Dialog
      • 13 Initiating a Session
        • 13.1 Overview
        • 13.2 UAC Processing
        • 13.3 UAS Processing
      • 14 Modifying an Existing Session
        • 14.1 UAC Behavior
        • 14.2 UAS Behavior
      • 15 Terminating a Session
        • 15.1 Terminating a Session with a BYE Request
      • 16 Proxy Behavior
        • 16.1 Overview
        • 16.2 Stateful Proxy
        • 16.3 Request Validation
        • 16.4 Route Information Preprocessing
        • 16.5 Determining Request Targets
        • 16.6 Request Forwarding
        • 16.7 Response Processing
        • 16.8 Processing Timer C
        • 16.9 Handling Transport Errors
        • 16.10 CANCEL Processing
        • 16.11 Stateless Proxy
        • 16.12 Summary of Proxy Route Processing
      • 17 Transactions
        • 17.1 Client Transaction
        • 17.2 Server Transaction
      • 18 Transport
      • 19 Common Message Components
        • 19.1 SIP and SIPS Uniform Resource Indicators
        • 19.2 Option Tags
        • 19.3 Tags
      • 20 Header Fields
        • 20.1 Accept
        • 20.2 Accept-Encoding
        • 20.3 Accept-Language
        • 20.4 Alert-Info
        • 20.5 Allow
        • 20.6 Authentication-Info
        • 20.7 Authorization
        • 20.8 Call-ID
        • 20.9 Call-Info
        • 20.10 Contact
        • 20.11 Content-Disposition
        • 20.12 Content-Encoding
        • 20.13 Content-Language
        • 20.14 Content-Length
        • 20.15 Content-Type
        • 20.16 CSeq
        • 20.17 Date
        • 20.18 Error-Info
        • 20.19 Expires
        • 20.20 From
        • 20.21 In-Reply-To
        • 20.22 Max-Forwards
        • 20.23 Min-Expires
        • 20.24 MIME-Version
        • 20.25 Organization
        • 20.26 Priority
        • 20.27 Proxy-Authenticate
        • 20.28 Proxy-Authorization
        • 20.29 Proxy-Require
        • 20.30 Record-Route
        • 20.31 Reply-To
        • 20.32 Require
        • 20.33 Retry-After
        • 20.34 Route
        • 20.35 Server
        • 20.36 Subject
        • 20.37 Supported
        • 20.38 Timestamp
        • 20.39 To
        • 20.40 Unsupported
        • 20.41 User-Agent
        • 20.42 Via
        • 20.43 Warning
        • 20.44 WWW-Authenticate
      • 21 Response Codes
        • 21.1 Provisional 1xx
        • 21.2 Successful 2xx
        • 21.3 Redirection 3xx
        • 21.4 Request Failure 4xx
        • 21.5 Server Failure 5xx
        • 21.6 Global Failures 6xx
      • 22 Usage of HTTP Authentication
        • 22.1 Framework
        • 22.2 User-to-User Authentication
        • 22.3 Proxy-to-User Authentication
        • 22.4 The Digest Authentication Scheme
      • 23 S/MIME
        • 23.1 S/MIME Certificates
        • 23.2 S/MIME Key Exchange
        • 23.3 Securing MIME bodies
        • 23.4 SIP Header Privacy and Integrity using S/MIME: Tunneling SIP
      • 24 Examples
        • 24.1 Registration
        • 24.2 Session Setup
      • 25 Augmented BNF for the SIP Protocol
      • 26 Security Considerations: Threat Model and Security Usage Recommendations
      • 27 IANA Considerations
      • 28 Changes From RFC 2543
        • 28.1 Major Functional Changes
        • 28.2 Minor Functional Changes
      • A Table of Timer Values
    • RFC3550: RTP: A Transport Protocol for Real-Time Applications
      • Abstract
      • 1. Introduction
      • 2. RTP Use Scenarios
        • 2.1 Simple Multicast Audio Conference
        • 2.2 Audio and Video Conference
        • 2.3 Mixers and Translators
        • 2.4 Layered Encodings
      • 3. Definitions
      • 4. Byte Order, Alignment, and Time Format
      • 5. RTP Data Transfer Protocol
        • 5.1 RTP Fixed Header Fields
        • 5.2 Multiplexing RTP Sessions
        • 5.3 Profile-Specific Modifications to the RTP Header
      • 6. RTP Control Protocol – RTCP
        • 6.1 RTCP Packet Format
        • 6.2 RTCP Transmission Interval
        • 6.3 RTCP Packet Send and Receive Rules
        • 6.4 Sender and Receiver Reports
        • 6.5 SDES: Source Description RTCP Packet
        • 6.6 BYE: Goodbye RTCP Packet
        • 6.7 APP: Application-Defined RTCP Packet
      • 7. RTP Translators and Mixers
        • 7.1 General Description
        • 7.2 RTCP Processing in Translators
        • 7.3 RTCP Processing in Mixers
        • 7.4 Cascaded Mixers
      • 8. SSRC Identifier Allocation and Use
      • 9. Security
        • 9.1 Confidentiality
        • 9.2 Authentication and Message Integrity
      • 10. Congestion Control
      • 11. RTP over Network and Transport Protocols
      • 12. Summary of Protocol Constants
        • 12.1 RTCP Packet Types
        • 12.2 SDES Types
      • 13. RTP Profiles and Payload Format Specifications
      • Appendix A. Algorithms
      • Appendix B. Changes from RFC 1889
    • RFC3551: RTP Profile for Audio and Video Conferences with Minimal Control
      • Abstract
      • 1. Introduction
      • 2. RTP and RTCP Packet Forms and Protocol Behavior
      • 3. Registering Additional Encodings
      • 4. Audio
        • 4.1 Encoding-Independent Rules
        • 4.2 Operating Recommendations
        • 4.3 Guidelines for Sample-Based Audio Encodings
        • 4.4 Guidelines for Frame-Based Audio Encodings
        • 4.5 Audio Encodings
      • 5. Video
      • 6. Payload Type Definitions
      • 7. RTP over TCP and Similar Byte Stream Protocols
      • 8. Port Assignment
      • 9. Changes from RFC 1890
    • RFC6184: RTP Payload Format for H.264 Video
      • 1. Introduction
        • 1.1. The H.264 Codec
        • 1.2. Parameter Set Concept
        • 1.3. Network Abstraction Layer Unit Types
      • 2. Conventions
      • 3. Scope
      • 4. Definitions and Abbreviations
        • 4.1. Definitions
        • 4.2. Abbreviations
      • 5. RTP Payload Format
        • 5.1. RTP Header Usage
        • 5.2. Payload Structures
        • 5.3. NAL Unit Header Usage
        • 5.4. Packetization Modes
        • 5.5. Decoding Order Number (DON)
        • 5.6. Single NAL Unit Packet
        • 5.7. Aggregation Packets
        • 5.8. Fragmentation Units (FUs)
      • 6. Packetization Rules
      • 7. De-Packetization Process
      • 8. Payload Format Parameters
        • 8.1. Media Type Registration
        • 8.2. SDP Parameters
        • 8.3. Examples
        • 8.4. Parameter Set Considerations
        • 8.5. Decoder Refresh Point Procedure Using In-Band Transport of Parameter Sets (Informative)
      • 12. Informative Appendix: Application Examples
        • 12.1. Video Telephony According to Annex A of ITU-T Recommendation H.241
        • 12.2. Video Telephony, No Slice Data Partitioning, No NAL Unit Aggregation
        • 12.3. Video Telephony, Interleaved Packetization Using NAL Unit Aggregation
        • 12.4. Video Telephony with Data Partitioning
        • 12.5. Video Telephony or Streaming with FUs and Forward Error Correction
        • 12.6. Low Bitrate Streaming
        • 12.7. Robust Packet Scheduling in Video Streaming
      • 13. Informative Appendix: Rationale for Decoding Order Number
        • 13.3. Example of Robust Packet Scheduling
    • RFC7826: Real-Time Streaming Protocol
      • Abstract
      • 1. Introduction
      • 2. Protocol Overview
        • 2.1. Presentation Description
        • 2.2. Session Establishment
        • 2.3. Media Delivery Control
        • 2.4. Session Parameter Manipulations
        • 2.5. Media Delivery
        • 2.6. Session Maintenance and Termination
        • 2.7. Extending RTSP
      • 3. Document Conventions
        • 3.2. Terminology
      • 4. Protocol Parameters
        • 4.1. RTSP Version
        • 4.2. RTSP IRI and URI
        • 4.3. Session Identifiers
        • 4.4. Media-Time Formats
        • 4.5. Feature Tags
        • 4.6. Message Body Tags
        • 4.7. Media Properties
      • 5. RTSP Message
        • 5.1. Message Types
        • 5.2. Message Headers
        • 5.3. Message Body
        • 5.4. Message Length
      • 6. General-Header Fields
      • 7. Request
        • 7.1. Request Line
        • 7.2. Request-Header Fields
      • 8. Response
        • 8.1. Status-Line
        • 8.2. Response Headers
      • 9. Message Body
        • 9.1. Message Body Header Fields
        • 9.2. Message Body
        • 9.3. Message Body Format Negotiation
      • 10. Connections
        • 10.1. Reliability and Acknowledgements
        • 10.2. Using Connections
        • 10.3. Closing Connections
        • 10.4. Timing Out Connections and RTSP Messages
        • 10.5. Showing Liveness
        • 10.6. Use of IPv6
        • 10.7. Overload Control
      • 11. Capability Handling
      • 12. Pipelining Support
      • 13. Method Definitions
        • 13.1. OPTIONS
        • 13.2. DESCRIBE
        • 13.3. SETUP
        • 13.4. PLAY
        • 13.5. PLAY_NOTIFY
        • 13.6. PAUSE
        • 13.7. TEARDOWN
        • 13.8. GET_PARAMETER
        • 13.10. REDIRECT
      • 14. Embedded (Interleaved) Binary Data
      • 15. Proxies
        • 15.1. Proxies and Protocol Extensions
        • 15.2. Multiplexing and Demultiplexing of Messages
      • 16. Caching
        • 16.1. Validation Model
        • 16.2. Invalidation after Updates or Deletions
      • 17. Status Code Definitions
      • 18. Header Field Definitions
        • 18.33. Pipelined-Requests
      • 19. Security Framework
        • 19.1. RTSP and HTTP Authentication
        • 19.2. RTSP over TLS
        • 19.3. Security and Proxies
      • 20. Syntax
        • 20.1. Base Syntax
        • 20.2. RTSP Protocol Definition
      • 21. Security Considerations
        • 21.1. Signaling Protocol Threats
      • Appendix A. Examples
        • A.1. Media on Demand (Unicast)
        • A.2. Media on Demand Using Pipelining
        • A.3. Secured Media Session for On-Demand Content
        • A.4. Media on Demand (Unicast)
        • A.5. Single-Stream Container Files
        • A.6. Live Media Presentation Using Multicast
        • A.7. Capability Negotiation
      • Appendix B. RTSP Protocol State Machine
        • B.1. States
        • B.2. State Variables
        • B.3. Abbreviations
        • B.4. State Tables
      • Appendix C. Media-Transport Alternatives
        • C.1. RTP
        • C.2. RTP over TCP
        • C.3. Handling Media-Clock Time Jumps in the RTP Media Layer
        • C.4. Handling RTP Timestamps after PAUSE
      • C.5. RTSP/RTP Integration
      • C.6. Scaling with RTP
      • C.7. Maintaining NPT Synchronization with RTP Timestamps
      • C.8. Continuous Audio
      • C.9. Multiple Sources in an RTP Session
      • C.10. Usage of SSRCs and the RTCP BYE Message during an RTSP Session
      • C.11. Future Additions
      • Appendix D. Use of SDP for RTSP Session Descriptions
        • D.1. Definitions
        • D.2. Aggregate Control Not Available
        • D.3. Aggregate Control Available
        • D.4. Grouping of Media Lines in SDP
        • D.5. RTSP External SDP Delivery
      • Appendix E. RTSP Use Cases
        • E.1. On-Demand Playback of Stored Content
        • E.2. Unicast Distribution of Live Content
        • E.3. On-Demand Playback Using Multicast
        • E.4. Inviting an RTSP Server into a Conference
        • E.5. Live Content Using Multicast
      • Appendix F. Text Format for Parameters
      • Appendix G. Requirements for Unreliable Transport of RTSP
      • Appendix H. Backwards-Compatibility Considerations
        • H.1. Play Request in Play State
        • H.2. Using Persistent Connections
      • Appendix I. Changes
        • I.1. Brief Overview
        • I.2. Detailed List of Changes
    • RFC8866: SDP-Session Description Protocol
      • 1. Introduction
      • 2. Glossary of Terms
      • 3. Examples of SDP Usage
        • 3.1. Session Initiation
        • 3.2. Streaming Media
        • 3.3. Email and the World Wide Web
        • 3.4. Multicast Session Announcement
      • 4. Requirements and Recommendations
        • 4.1. Media and Transport Information
        • 4.2. Timing Information
        • 5. SDP Specification
        • 5.1. Protocol Version (“v=”)
        • 5.2. Origin (“o=”)
        • 5.3. Session Name (“s=”)
        • 5.4. Session Information (“i=”)
        • 5.5. URI (“u=”)
        • 5.6. Email Address and Phone Number (“e=” and “p=”)
        • 5.7. Connection Information (“c=”)
        • 5.8. Bandwidth Information (“b=”)
        • 5.9. Time Active (“t=”)
        • 5.10. Repeat Times (“r=”)
        • 5.11. Time Zone Adjustment (“z=”)
        • 5.12. Encryption Keys (“k=”)
        • 5.13. Attributes (“a=”)
        • 5.14. Media Descriptions (“m=”)
      • 6. SDP Attributes
        • 6.1. cat (Category)
        • 6.2. keywds (Keywords)
        • 6.3. tool
        • 6.4. ptime (Packet Time)
        • 6.5. maxptime (Maximum Packet Time)
        • 6.6. rtpmap
        • 6.7. Media Direction Attributes
        • 6.8. orient (Orientation)
        • 6.9. type (Conference Type)
        • 6.10. charset (Character Set)
        • 6.11. sdplang (SDP Language)
        • 6.12. lang (Language)
        • 6.13. framerate (Frame Rate)
        • 6.14. quality
        • 6.15. fmtp (Format Parameters)
      • 7. Security Considerations
      • 8. IANA Considerations
      • 9. SDP Grammar
      • 10. Summary of Changes from RFC 4566
    • rfc7350: DTLS as Transport for STUN
    • RFC5769: Test Vectors for STUN
    • rfc5780: NAT Behavior Discovery Using STUN
    • rfc7443: ALPN Labels for STUN Usages
    • rfc7635: STUN Extension for Third-Party Authorization
    • RFC8489: STUN - Session Traversal Utilities for NAT
    • RFC5280: Internet X.509 PKIC and CRL Profile
      • 参考
    • RFC5652: Cryptographic Message Syntax (CMS)
      • 参考
    • RFC5912: New ASN.1 Modules for the PKIX
      • 参考
    • RFC2045: (MIME) Part One: Format of Internet Message Bodies
      • 1. Introduction
      • 2. Definitions, Conventions, and Generic BNF Grammar
      • 3. MIME Header Fields
      • 4. MIME-Version Header Field
        • 示例
      • 5. Content-Type Header Field
        • 5.1 Syntax of the Content-Type Header Field
        • 5.2 Content-Type Defaults
      • 6. Content-Transfer-Encoding Header Field
        • 6.1. Content-Transfer-Encoding Syntax
        • 6.2. Content-Transfer-Encodings Semantics
        • 6.3. New Content-Transfer-Encodings
        • 6.4. Interpretation and Use
        • 6.5. Translating Encodings
        • 6.6. Canonical Encoding Model
        • 6.7. Quoted-Printable Content-Transfer-Encoding
        • 6.8. Base64 Content-Transfer-Encoding
      • 7. Content-ID Header Field
      • 8. Content-Description Header Field
      • 9. Additional MIME Header Fields
      • Appendix A – Collected Grammar
        • content
        • encoding
        • id
        • description
        • MIME-extension-field
        • 通用
    • RFC2046: (MIME) Part Two: Media Types
      • 3. Overview Of The Initial Top-Level Media Types
      • 4. Discrete Media Type Values
        • 4.1. Text Media Type
        • 4.2. Image Media Type
        • 4.3. Audio Media Type
        • 4.4. Video Media Type
        • 4.5. Application Media Type
      • 5. Composite Media Type Values
        • 5.1. Multipart Media Type
        • 5.2 Message Media Type
      • 6. Experimental Media Type Values
    • RFC2047: (MIME) Part Three: Message Header Extensions for Non-ASCII Text
      • 1. Introduction
      • 2. Syntax of encoded-words
      • 3. Character sets
      • 4. Encodings
      • 5. Use of encoded-words in message headers
      • 6. Support of ‘encoded-word’s by mail readers
      • 7. Conformance
      • 8. Examples
    • RFC2048: (MIME) Part Four: Registration Procedures
      • 1. Introduction
      • 2. Media Type Registration
        • 2.1. Registration Trees and Subtype Names
        • 2.2 Registration Requirements
        • 2.3 Registration Procedure
        • 2.4 Comments on Media Type Registrations
        • 2.5 Location of Registered Media Type List
        • 2.6. IANA Procedures for Registering Media Types
        • 2.7. Change Control
        • 2.8 Registration Template
      • 3. External Body Access Types
      • 4. Transfer Encodings
    • RFC2049: (MIME) Part Five: Conformance Criteria and Examples
      • 1. Introduction
      • 2. MIME Conformance
      • 3. Guidelines for Sending Email Data
      • 4. Canonical Encoding Model
      • Appendix A – A Complex Multipart Example
    • rfc1123
    • RFC3232: ASSIGNED NUMBERS
      • RFC1700
    • rfc3339
      • 参考
    • RFC5234: Augmented BNF for Syntax Specifications: ABNF
      • 示例
  • iana
  • IEEE
    • 常用
    • IEEE 802.3
      • Ethernet II
    • 802.11: Wireless LAN & Mesh
      • Protocol
      • 参考
    • 802.15: Wireless PAN
      • 802.15.4: Low-Rate wireless PAN
  • ITU
    • 常用
      • 电信标准化
        • 研究组
    • X-Series
      • DIRECTORY
      • ASN.1
      • 参考
    • G-Series
      • 参考
    • H-Series
      • 参考
  • ISO
    • 常用
    • ISO/IEC 10646: Universal coded character set (UCS)
    • ISO/IEC 13818
      • Part 1: Systems
      • Part 6: Extensions for DSM-CC
  • 中标
    • GB/T28181安全技术视频监控联网系统信息传输, 交换, 控制技术要求
  • pep
    • pep-3333
      • 背景与动机
      • pep-3333主要变化
      • 规范概述
        • 应用程序端
        • 服务器端
        • 中间件
    • pep-0440
      • 简介
      • 基本格式
      • 版本号的比较
    • PEP 420 – Implicit Namespace Packages
      • 核心要点
      • 主要优势
      • 当前现有方案
        • pkgutil-style namespace packages
        • pkg_resources-style namespace packages
        • 两方案的不足
      • Specification 规范
        • 说明
        • 命名空间包和常规包之间的区别
      • Examples
        • Nested namespace packages
        • Dynamic path computation
  • 论文
    • 通用
      • 通用
        • 如何看一个论文是不是重要
      • 学术网站
        • 学术搜索平台
        • 资源共享
        • 论文数据库
    • Agents
      • React
      • Chat with the Environment
        • 正文
      • Reflexion: Language Agents with Verbal Reinforcement Learning
      • TaskMatrix.AI
        • 大脑
        • 接口平台
        • API 选择器
      • Generative Agents
        • Generative Agent Architecture
      • ChatDev: Communicative Agents for Software Development
      • MetaGPT: Meta Programming for A Multi-Agent Collaborative Framework
      • AgentSims: An Open-Source Sandbox for Large Language Model Evaluation
      • AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation
      • AgentVerse: Facilitating Multi-Agent Collaboration and Exploring Emergent Behaviors
        • 理念
      • Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models
      • Data Interpreter: An LLM Agent For Data Science
        • INTRODUCTION
      • Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence
        • 2.1 OVERVIEW OF IOA
        • 2.2 ARCHITECTURE OF IOA
        • 2.3 KEY MECHANISMS
        • 2.5 Putting It All Together
      • ADAS: Automated Design of Agentic Systems
        • Prompt
      • SELA: Tree-Search Enhanced LLM Agents for Automated Machine Learning
        • 1 Introduction
        • 2 Related Works
        • 3 Method
      • AFlow: Automating Agentic Workflow Generation
        • Introduce
        • PRELIMINARY
      • FACT: Examining the Effectiveness of Iterative Context Rewriting for Multi-fact Retrieval
        • Introduce
    • 大模型调优
      • Prefix-Tuning: Optimizing Continuous Prompts for Generation
      • p-tuning: GPT Understands, Too
      • Prompt Tuning: The Power of Scale for Parameter-Efficient Prompt Tuning
      • LoRA: Low-Rank Adaptation of Large Language Models
      • QLoRA: Efficient Finetuning of Quantized LLMs
      • Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models
      • DoRA: Weight-Decomposed Low-Rank Adaptation
      • LoRA+: Efficient Low Rank Adaptation of Large Models
      • GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection
      • LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models
        • 竞争框架
        • 3. Efficient Fine-Tuning Techniques
        • 4 LlamaFactory Framework
        • 6 Conclusion and Future Work
      • 2305.20050_Let’s Verify Step by Step
        • 1. 研究背景
        • 2. 监督方法对比
        • 3. 核心发现
        • 总结
      • Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters
        • 1. Introduction
        • 3. How to Scale Test-Time Computation Optimally
        • 5. Scaling Test-Time Compute via Verifiers
        • 6. Refining the Proposal Distribution
        • 其他
      • Scaling of Search and Learning: A Roadmap to Reproduce o1 from Reinforcement Learning Perspective
        • FromGPT
        • 1. Introduction
        • 2. Background
        • 3. Policy Initialization
        • 4. Reward Design
        • 5. Search
        • 6. Learning
        • 7 Open-source o1 Project
        • 8. Future Directions
      • 2203.02155_Training language models to follow instructions with human feedback(InstructGPT)
        • Abstract
        • 1. Introduction
        • 2. Related work
        • 3. Methods and experimental details
        • 4. Results
        • 5. Discussion
        • Appendix A Additional prompt data details
        • Appendix B Additional human data collection details
        • Appendix C Additional model details
        • Appendix D Automatic evaluation details
    • 分布式模型
      • 通用
      • 1701.06538_MoE: Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer
      • 1806.03377_PipeDream: Fast and Efficient Pipeline Parallel DNN Training
        • Abstract
        • 1. Introduction
        • 2. Background & Related Work
        • 3. Parallel Training in PipeDream
        • 4. Implementation
        • 5. Evaluation
      • 1811.06965_GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism
        • 收集
        • 1. Introduction
        • 2. The GPipe Library
        • 3. Performance Analyses
        • 4. Image Classification
        • 5. Massive Massively Multilingual Machine Translation
        • 6. Design Features and Trade-Offs
      • 1909.08053_Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism
        • 收集
        • Abstract
        • 1. Introduction
        • 2. Background and Challenges
        • 3. Model Parallel Transformers
      • 19xx_PipeDream: Generalized Pipeline Parallelism for DNN Training
        • 收集
        • ABSTRACT
        • 1. Introduction
        • 2. BACKGROUND AND RELATED WORK
        • 3. 流水线并行(PIPELINE PARALLELISM)
        • 4. 实现
        • 6. 结论
      • 2006.15704_PyTorch Distributed: Experiences on Accelerating Data Parallel Training
      • 2006.16668_GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding
      • 2006.09503_PipeDream-2BW: Memory-Efficient Pipeline-Parallel DNN Training
        • Abstract
      • 2104.04473_Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM
        • Abstract
      • 2205.14135_FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness
        • Abstract
        • 1. Introduction
        • 2 Background
        • 3. FLASHATTENTION: Algorithm, Analysis, and Extensions
        • 4. Experiments
        • 5. Limitations and Future Directions
        • Appendix A Related Work
        • Appendix B Algorithm Details
        • Appendix C Proofs
        • Appendix D Extension Details
      • 2307.08691_FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning
        • Abstract
        • 1. Introduction
        • 2. Background
        • 3. FlashAttention-2: Algorithm, Parallelism, and Work Partitioning
        • 4. Empirical Validation
        • 5. Discussion and Future Directions
    • NLP LLM
      • GPT1: Improving Language Understanding by Generative Pre-Training
        • Abstract
        • 1. Introduction
        • 2. Related Work
        • 3. Framework
        • 4 Experiments
        • 5 Analysis
        • 6 Conclusion
        • 引文口碑
        • 要点解读
      • BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
        • 1 Introduction
        • 2 Related Work
        • 3 BERT
        • Appendix A Additional Details for BERT
      • GPT2: Language Models are Unsupervised Multitask Learners
        • The Illustrated GPT-2
        • 参考
      • CPM: A Large-scale Generative Chinese Pre-trained Language Model
      • LLaMA: Open and Efficient Foundation Language Models
      • Llama 2: Open Foundation and Fine-Tuned Chat Models
      • Qwen Technical Report
      • DeepSeek-Coder: When the Large Language Model Meets Programming – The Rise of Code Intelligence
      • MiniCPM: Unveiling the Potential of Small Language Models with Scalable Training Strategies
        • 5. Two Stage Pre-training Strategy
        • 6. Model
        • 7 MiniCPM Family
      • DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model
      • ChatGLM: A Family of Large Language Models from GLM-130B to GLM-4 All Tools
    • MoE LLM
      • MoDEM: Mixture of Domain Expert Models
      • AUXILIARY-LOSS-FREE LOAD BALANCING STRATEGY FOR MIXTURE-OF-EXPERTS
    • Vision LLm
      • 1506.02640_You Only Look Once: Unified, Real-Time Object Detection
        • Abstract
      • 1612.08242_YOLO9000: Better, Faster, Stronger
        • Abstract
      • 1804.02767_YOLOv3
      • 2004.10934_YOLOv4: Optimal Speed and Accuracy of Object Detection
        • Abstract
      • 2207.02696_YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
        • Abstract
      • Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection
      • 2304.08485_Visual Instruction Tuning
      • Qwen-VL: A Versatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond
        • Methodology
        • Training
        • Evaluation
        • B. Data Format Details of Training
      • 2402.13616_YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information
        • Abstract
      • DeepSeek-VL: Towards Real-World Vision-Language Understanding
        • Abstract
      • 2405.14458_YOLOv10: Real-Time End-to-End Object Detection
        • Abstract
      • 2411.15858_SVTRv2: CTC Beats Encoder-Decoder Models in Scene Text Recognition
        • 定义
        • Abstract
        • 1. Introduction
        • 2. Related Work
        • 3. Methods
        • 4 Experiments
        • 5. Conclusion
        • 8. More detail of real-world datasets
    • LLMMultimodal
      • 2209.08199_ScreenQA: Large-Scale Question-Answer Pairs over Mobile App Screenshots
        • Abstract
        • 1. Introduction
        • 2. Related Work
        • 3. Problem Setting: Tasks and Metrics
        • 4. Data Annotation
        • 5. Dataset Analysis
        • 6. Experiments and Baselines
        • 7. Conclusion
        • 8. Limitations
        • 9. Ethical Considerations
        • A. Data Annotation Details
        • B. Data Examples
      • 2212.06817_RT-1: ROBOTICS TRANSFORMER FOR REAL-WORLD CONTROL AT SCALE
        • ABSTRACT
        • 1. Introduction
        • 2. Related Work
        • 3. Preliminaries
        • 4. System Overview
        • 5. RT-1: ROBOTICS TRANSFORMER
        • 6. EXPERIMENTS
        • 7. CONCLUSIONS, LIMITATIONS AND FUTURE WORK
        • B. MODEL CARD
        • C. MODEL AND DATA
        • D. EXPERIMENTS
      • 2401.10935_SeeClick: Harnessing GUI Grounding for Advanced Visual GUI Agents
        • Abstract
        • 1. Introduction
        • 2. Related work
        • 3. Approach
        • 4. ScreenSpot: A Grounding Benchmark
        • 5. Experiments
        • 6. Conclusion
        • Limitations
        • Ethical considerations
        • A. Details of SeeClick Pre-training
        • B ScreenSpot Annotation & Evaluation
        • C. Downstream Agent Tasks
      • 2402.04615_ScreenAI: A Vision-Language Model for UI and Infographics Understanding
        • Abstract
        • 1. Introduction
        • 2. Methodology
        • 3. Automatic data generation
        • 4. Data Mixtures
        • 5. Experiments and Results
        • 6. Conclusions
        • A Definitions of Metrics
        • B. Screen Schema Examples
        • C. Prompts For LLM Generated Content
        • D. Screen Navigation Generated Examples
        • F. ScreenQA Short Answers Generation
        • G. Complex Question Answering Datasets
        • H. New Benchmarks Repositories
      • 2411.02059_TableGPT2: A Large Multimodal Model with Tabular Data Integration
        • Abstract
    • LLM强化学习
      • 1703.03864_Evolution Strategies: as a Scalable Alternative to Reinforcement Learning
      • 2504.02495_DeepSeek-GRM: Inference-Time Scaling for Generalist Reward Modeling
        • Abstract
        • 1. Introduction
        • 2. Preliminaries
        • 3. Self-Principled Critique Tuning (SPCT)
        • 4. Inference-Time Scaling with SPCT
        • 5. Results on Reward Modeling Benchmarks
        • 6. Related Work
        • 7. Conclusion and Future Work
        • A. Additional Related Work
        • B. Limitations and Future Directions
        • G. Prompt Templates
    • 3D
      • Deep vanishing point detection: Geometric priors make dataset variations vanish
        • 概念
        • Abstract
        • 1. Introduction
        • 2. Related Work
        • 3. Geometric priors for VP detection
        • 4. Experiments
        • 5. Conclusion and limitations
      • 2312.14132_DUSt3R: Geometric 3D Vision Made Easy
        • 关键词
        • 相关概念
        • Abstract
        • 1. Introduction
        • 2. Related Work
        • 3. Method
        • 4. Experiments with DUSt3R
        • 5. Conclusion
        • Appendix A 附录概览
        • Appendix B. Qualitative results
        • Appendix C. Extended Related Work
        • Appendix D. 多视角姿态估计(Multi-view Pose Estimation)
        • Appendix E. 视觉定位(Visual Localization)
        • Appendix F. Training details
      • 2406.09756_MASt3R: Grounding Image Matching in 3D with MASt3R
        • 前言
        • Abstract
        • 1. Introduction
        • 🧠 思维导图式总结
        • 2. Related works
        • 🧠 总结思维导图
        • 3. Method
        • 4. Experimental results
        • 5. Conclusion
        • Appendix
        • Appendix A Additional Qualitative Results
        • B. Fast Reciprocal Matching
        • C. Coarse-to-Fine
        • D. Detailed experimental settings
      • 2412.09401_SLAM3R: Real-Time Dense Scene Reconstruction from Monocular RGB Videos
        • 术语
        • Abstract
        • 1. Introduction
        • 2. Related Work
        • 3. Method
        • 4. Experiments
        • 5. Conclusion
        • 6. 致谢
        • Appendix
        • Appendix A Implementation details
        • Appendix B Details for experimental settings
        • Appendix C Additional comparisons and analyses
        • D. More visual results
      • 2412.12392_MASt3R-SLAM: Real-Time Dense SLAM with 3D Reconstruction Priors
        • GPT
        • 先验知识
        • Abstract
        • 1. Introduction
        • 2. Related Work
        • 3. Method
        • 4. Results
        • 5. Limitations and Future Work(局限与未来工作)
        • 🧾 6. Conclusion(总结)
        • 🧠 总结一句话版:
        • 8. Initialisation(初始化)
        • 9. Runtime Breakdown(运行时分析)
        • 10. Evaluation Setup(评估设置)
        • 11. EuRoC 结果总结
      • 2503.11651_VGGT: Visual Geometry Grounded Transformer
        • Abstract
        • 1. Introduction
        • 2. Related Work
        • 3. Method
        • 4. Experiments
        • 5. Discussions
        • 6. Conclusions
        • Appendix A Formal Definitions
        • Appendix B Implementation Details
        • Appendix C Additional Experiments
        • Appendix D Qualitative Examples
        • Appendix E Related Work
    • LLM 安全
      • 2312.06674_Llama Guard: LLM-based Input-Output Safeguard for Human-AI Conversations
    • Benchmarking
      • 2404.07972_OSWorld: Benchmarking Multimodal Agents for Open-Ended Tasks in Real Computer Environments
        • Abstract
        • 1. Introduction
        • 2. OSWORLD Environment
        • 3. OSWORLD Benchmark
        • 4. Benchmarking LLM and VLM Agent Baselines
        • 5. Analysis
        • 6. Related Work
        • 7. Conclusion and Future Work
        • A. Details of OSWORLD Environment
        • C. Details of Baseline Methods
        • D. Examples of Qualitative Analysis
    • 数据集&数据蒸馏
      • 通用
        • Dataset distillation
      • 1811.10959v3_Dataset Distillation
        • ABSTRACT
        • LLM总结
        • 1. INTRODUCTION
        • 3. APPROACH
      • 2502.20653_Dataset Distillation with Neural Characteristic Function: A Minmax Perspective
        • Abstract
        • 1. Introduction
        • 2. Related Work
        • 7. Conclusion
    • Framework
      • 1712.05889_Ray: A Distributed Framework for Emerging AI Applications
        • Abstract
        • 1. Introduction
        • 2. Motivation and Requirements
        • 3. Programming and Computation Model
        • 4. Architecture
        • 5. Evaluation
        • 6 Related Work
        • 7 Discussion and Experiences
        • 8. Conclusion
      • 1910.02054_DeepSpeed_ZeRO: Memory Optimizations Toward Training Trillion Parameter Models
        • Abstract
        • 1. Extended Introduction
        • 2. Related Work
        • 3 Where Did All the Memory Go?
        • 4 ZeRO: Insights and Overview
        • 5 Deep Dive into ZeRO-DP
        • 6 Deep Dive into ZeRO-R
        • 7 Communication Analysis of ZeRO-DP
        • 8. Communication Analysis of ZeRO-R
        • 9. Step Towards 1 Trillion Parameters
        • 10. Implementation and Evaluation
        • 11. Concluding Remarks
      • PyTorch: An Imperative Style, High-Performance Deep Learning Library
      • Transformers: State-of-the-Art Natural Language Processing
      • 2210.XX_Ray v2 Architecture
        • Overview
        • Architecture Overview
        • Object Management
        • Task Management
        • Resource Management and Scheduling
        • Actor management
        • Global Control Service
        • Cluster Management
        • Appendix
      • 2309.06180_Efficient Memory Management for Large Language Model Serving with PagedAttention
        • 1. Introduction
        • 2. Background
        • 3. Memory Challenges in LLM Serving
        • 4. Method
        • 5. Implementation
        • 6. Evaluation
        • 7. Ablation Studies
        • 10. Conclusion
    • ML
      • WebGPT: Browser-assisted question-answering with human feedback
      • Teaching language models to support answers with verified quotes
      • FActScore: Fine-grained Atomic Evaluation of Factual Precision in Long Form Text Generation
      • Evaluating Verifiability in Generative Search Engines
      • Citation: A Key to Building Responsible and Accountable Large Language Models
      • HAGRID: A Human-LLM Collaborative Dataset for Generative Information-Seeking with Attribution
      • Enabling Large Language Models to Generate Text with Citations
        • NLI 在引用质量评估中的应用
        • 论文中用的prompt
    • RAG
      • 2005.11401_Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks
      • 2312.10997_Retrieval-Augmented Generation for Large Language Models: A Survey
        • II. Overview of RAG
        • III. Retrieval
        • IV. Generation
        • V. Augmentation process in RAG
        • VI. Task and Evaluation
        • VII. Discussion and Future Prospects
      • 2401.15884_CRAG: Corrective Retrieval Augmented Generation
      • 2403.14403_Adaptive-RAG
      • 2404.16130_From Local to Global: A Graph RAG Approach to Query-Focused Summarization
        • 简介
        • 相关的技术讨论
      • 2405.16506_GRAG: Graph Retrieval-Augmented Generation
      • GraphRAG 官方文档
        • Indexing
        • Query
      • 2406.13213_Multi-Meta-RAG: Improving RAG for Multi-Hop Queries using Database Filtering with LLM-Extracted Metadata
      • 2410.10450_KBLaM: Knowledge Base augmented Language Model
        • Abstract
        • 1. Introduction
        • 2. Related work
        • 3. Background
        • 4. Augmenting LLM with the KB
        • 5. KB instruction tuning
        • 6. EXPERIMENTS
        • 7. CONCLUSION
        • 8. LIMITATIONS AND FUTURE WORK
        • Appendix A Extended related work
        • Appendix B Ablation study
        • Appendix C Sample KB
        • SAMPLE Q&A
        • PROMPT
        • SAMPLE OUTPUT
      • 2504.03137_LightPROF: A Lightweight Reasoning Framework for Large Language Model on Knowledge Graph
        • Abstract
        • Introduction
        • Related Work
        • Preliminaries
        • Methodology
        • Experiments
        • Conclusion
    • Tools
      • MRKL
      • Toolformer: Language Models Can Teach Themselves to Use Tools
      • HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face
    • 手机业务
      • AppAgent: Multimodal Agents as Smartphone Users
        • 3.1 Environment and Action Space
        • 3.2 Exploration Phase
        • 3.3 Deployment Phase
      • Mobile-Agent-v2: Mobile Device Operation Assistant with Effective Navigation via Multi-Agent Collaboration
      • 2501.11733_Mobile-Agent-E: Self-Evolving Mobile Assistant for Complex Tasks
        • Abstract
        • 1. Introduction
        • 2. Mobile-Agent-E
        • 3. Experiments
        • 4. Results
        • 5. Related Work
        • 6. Conclusion and Future Work
        • Appendix A Full Trajectory Comparison Example with Previous SOTA
        • Appendix B Error Recovery with Escalation to Manager
        • Appendix C Remaining Limitations
        • Appendix D All Tasks in Mobile-Eval-E Benchmark
        • Appendix E Atomic Operation Space
        • Appendix F Full list of Self-Evolved Shortcuts
        • Appendix G Full list of Self-Evolved Tips
      • 2501.12326_UI-TARS: Pioneering Automated GUI Interaction with Native Agents
        • Abstract
        • 1. Introduction
        • 2. Evolution Path of GUI Agents
        • 3. Core Capabilities of Native Agent Model
        • 4. UI-TARS
        • 5. Experiment
        • 6. Conclusion
      • 2502.14282_PC-Agent: A Hierarchical Multi-Agent Collaboration Framework for Complex Task Automation on PC
        • Abstract
        • 1. Introduction
        • 2. PC-Agent
        • 3. Experiments
        • 4. Related Work
        • 5. Conclusion
    • AGI
      • AI-GAs: AI-generating algorithms, an alternate paradigm for producing general artificial intelligence
      • The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery
    • others
      • A PAINLESS GUIDE TO CRC ERROR DETECTION ALGORITHMS
        • The Basic Idea Behind CRC Algorithms
        • Polynomical Arithmetic
        • Binary Arithmetic with No Carries
        • 一个可用的实例
        • Choosing A Poly
        • A Straightforward CRC Implementation
        • A Table-Driven Implementation
        • A Slightly Mangled Table-Driven Implementation
        • 参考
      • Distributed Representations of Sentences and Documents
      • TODO
        • 大模型
        • 别人的收集
  • 临时
    • 学习记录
      • 局域网内的服务发现会有什么方法
        • mDNS协议
        • 命令工具
      • 组播&广播
        • IPv4多播转发
        • 多播功能
        • 任播
新溪-gordon
  • Docs »
  • rfc »
  • RFC7707: Network Reconnaissance in IPv6 Networks
  • View page source

On This Page

  • RFC7707: Network Reconnaissance in IPv6 Networks
    • 参考

主页

索引

模块索引

搜索页面

RFC7707: Network Reconnaissance in IPv6 Networks¶

参考¶

  • https://www.rfc-editor.org/rfc/rfc7707

主页

索引

模块索引

搜索页面

Next Previous

© Copyright 2010-2025, 新溪-gordon.

备案号 京ICP备16018553号
Built with Sphinx using a theme provided by Read the Docs
.

  • On This Page
  • RFC7707: Network Reconnaissance in IPv6 Networks¶
  • 参考¶
Powered by Yiting & Majiang