5.17.2. onnxruntime¶
GitHub(MIT License): https://github.com/microsoft/onnxruntime
Youtube: https://www.youtube.com/@ONNXRuntime
[example]inference: https://github.com/microsoft/onnxruntime-inference-examples
[example]training: https://github.com/microsoft/onnxruntime-training-examples
简介¶
ONNX Runtime
is a cross-platform inference and training machine-learning accelerator.ONNX Runtime inference
can enable faster customer experiences and lower costs, supporting models from deep learning frameworks such as PyTorch and TensorFlow/Keras as well as classical machine learning libraries such as scikit-learn, LightGBM, XGBoost, etc. ONNX Runtime is compatible with different hardware, drivers, and operating systems, and provides optimal performance by leveraging hardware accelerators where applicable alongside graph optimizations and transformsONNX Runtime training
can accelerate the model training time on multi-node NVIDIA GPUs for transformer models with a one-line addition for existing PyTorch training scripts.
安装¶
pip install onnxruntime-gpu
or
pip install onnxruntime
使用¶
PyTorch CV¶
Export the model using torch.onnx.export
torch.onnx.export(model, # model being run
torch.randn(1, 28, 28).to(device), # model input (or a tuple for multiple inputs)
"fashion_mnist_model.onnx", # where to save the model (can be a file or file-like object)
input_names = ['input'], # the model's input names
output_names = ['output']) # the model's output names
Load the onnx model with onnx.load
:
import onnx
onnx_model = onnx.load("fashion_mnist_model.onnx")
onnx.checker.check_model(onnx_model)
Create inference session using ort.InferenceSession:
import onnxruntime as ort
import numpy as np
x, y = test_data[0][0], test_data[0][1]
ort_sess = ort.InferenceSession('fashion_mnist_model.onnx')
outputs = ort_sess.run(None, {'input': x.numpy()})
# Print Result
predicted, actual = classes[outputs[0][0].argmax(0)], classes[y]
print(f'Predicted: "{predicted}", Actual: "{actual}"')
PyTorch NLP¶
Export Model:
# Export the model
torch.onnx.export(model, # model being run
(text, offsets), # model input (or a tuple for multiple inputs)
"ag_news_model.onnx", # where to save the model (can be a file or file-like object)
export_params=True, # store the trained parameter weights inside the model file
opset_version=10, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names = ['input', 'offsets'], # the model's input names
output_names = ['output'], # the model's output names
dynamic_axes={'input' : {0 : 'batch_size'}, # variable length axes
'output' : {0 : 'batch_size'}})
Load the model using onnx.load:
import onnx
onnx_model = onnx.load("ag_news_model.onnx")
onnx.checker.check_model(onnx_model)
Create inference session with ort.infernnce:
import onnxruntime as ort
import numpy as np
ort_sess = ort.InferenceSession('ag_news_model.onnx')
outputs = ort_sess.run(None, {'input': text.numpy(),
'offsets': torch.tensor([0]).numpy()})
# Print Result
result = outputs[0].argmax(axis=1)+1
print("This is a %s news" %ag_news_label[result[0]])