5.7.11. API-DataFrame¶
Constructor¶
简介:
Two-dimensional, size-mutable, potentially heterogeneous tabular data.
结构:
DataFrame(data=None, index=None, columns=None, dtype=None, copy=False)[source]
Parameters:
1. data: ndarray (structured or homogeneous), Iterable, dict, or DataFrame
2. index: Index or array-like
3. columns: Index or array-like
4. dtype: dtype, default None
5. copy: bool, default False
备注
DataFrame的创建主要有三种方式
通过二维数组创建数据框:
In [42]: arr2 = np.array(np.arange(12)).reshape(4,3) ...: print(arr2) [[ 0 1 2] [ 3 4 5] [ 6 7 8] [ 9 10 11]] In [43]: df1 = pd.DataFrame(arr2) ...: print(df1) 0 1 2 0 0 1 2 1 3 4 5 2 6 7 8 3 9 10 11
通过字典的方式创建数据框:
In [44]: dic2 = {'a':[1,2,3,4],'b':[5,6,7,8],'c':[9,10,11,12],'d':[13,14,15,16]} ...: print(dic2) {'a': [1, 2, 3, 4], 'b': [5, 6, 7, 8], 'c': [9, 10, 11, 12], 'd': [13, 14, 15, 16]} In [47]: df2 = pd.DataFrame(dic2) ...: print(df2) a b c d 0 1 5 9 13 1 2 6 10 14 2 3 7 11 15 3 4 8 12 16
通过数据框的方式创建数据框:
In [49]: df4 = df2[['a','b']] ...: print(df4) a b 0 1 5 1 2 6 2 3 7 3 4 8
Reshaping, sorting, transposing¶
DataFrame.pivot_table函数¶
说明:
Create a spreadsheet-style pivot table as a DataFrame
结构:
DataFrame.pivot_table(
values=None, # column to aggregate, optional
index=None, # Keys to group by on the pivot table index
columns=None, # Keys to group by on the pivot table column.
aggfunc='mean', # the key is column to aggregate
fill_value=None, # Value to replace missing values
margins=False, # Add all row / columns
dropna=True, # Do not include columns whose entries are all NaN
margins_name='All', #
observed=False
)