主页

索引

模块索引

搜索页面

6.4.1. 常用

Quickstart

Prerequisites:

OS: Linux
Python: 3.9 – 3.12
GPU: compute capability 7.0 or higher (e.g., V100, T4, RTX20xx, A100, L4, H100, etc.)

Offline Batched Inference

from vllm import LLM, SamplingParams
prompts = [
    "Hello, my name is",
    "The president of the United States is",
    "The capital of France is",
    "The future of AI is",
]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)

llm = LLM(model="facebook/opt-125m")

outputs = llm.generate(prompts, sampling_params)

for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")

OpenAI-Compatible Server

vllm serve Qwen/Qwen2.5-1.5B-Instruct

$ curl http://localhost:8000/v1/models

OpenAI Completions API with vLLM

curl http://localhost:8000/v1/completions \
    -H "Content-Type: application/json" \
    -d '{
        "model": "Qwen/Qwen2.5-1.5B-Instruct",
        "prompt": "San Francisco is a",
        "max_tokens": 7,
        "temperature": 0
    }'

python版本:

from openai import OpenAI

# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)
completion = client.completions.create(model="Qwen/Qwen2.5-1.5B-Instruct",
                                      prompt="San Francisco is a")
print("Completion result:", completion)

OpenAI Chat Completions API with vLLM

curl http://localhost:8000/v1/chat/completions \
    -H "Content-Type: application/json" \
    -d '{
        "model": "Qwen/Qwen2.5-1.5B-Instruct",
        "messages": [
            {"role": "system", "content": "You are a helpful assistant."},
            {"role": "user", "content": "Who won the world series in 2020?"}
        ]
    }'
from openai import OpenAI
# Set OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"

client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)

chat_response = client.chat.completions.create(
    model="Qwen/Qwen2.5-1.5B-Instruct",
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "Tell me a joke."},
    ]
)
print("Chat response:", chat_response)

Debugging Tips

Enable more logging

export VLLM_LOGGING_LEVEL=DEBUG
export CUDA_LAUNCH_BLOCKING=1
    to identify which CUDA kernel is causing the problem.
export NCCL_DEBUG=TRACE
    to turn on more logging for NCCL.
export VLLM_TRACE_FUNCTION=1
    to record all function calls for inspection in the log files to tell which function crashes or hangs.

主页

索引

模块索引

搜索页面