主页

索引

模块索引

搜索页面

6.2.3. ExecuTorch

Introduction

ExecuTorch Overview

  • Executorch是一款端到端解决方案,用于在移动的和边缘设备(包括可穿戴设备、嵌入式设备和微控制器)上实现设备上的推理功能。它是PyTorch Edge生态系统的一部分,可以将PyTorch模型高效部署到边缘设备。

主要价值主张(key value propositions):

- Portability
- Productivity
- Performance

How ExecuTorch Works

从高层次上讲,在边缘设备(如笔记本电脑、移动的手机、可穿戴设备和物联网设备)上使用Executorch运行PyTorch模型有三个步骤:

1. Export the model
2. Compile the exported model to an ExecuTorch program
3. Run the ExecuTorch program on a target device
https://img.zhaoweiguo.com/uPic/2024/10/cdXAHP.png

Key Benefits:

1. Export that is robust and powerful
2. Operator standardization
3. Standardization for compiler interfaces (aka delegates) and the OSS ecosystem
4. First-party SDK and toolchain
5. No intermediate conversions necessary
6. Ease of customization
7. Low overhead runtime and execution

High-level Architecture and Components of ExecuTorch

https://img.zhaoweiguo.com/uPic/2024/10/Lh2ypG.png

将PyTorch模型部署到设备上有三个阶段:程序准备(Program Preparation),运行时准备(Runtime Preparation)和程序执行(Program Execution)

Getting Started

Setting Up ExecuTorch

install:

pip install executorch

Export a Program:

# ExecuTorch provides APIs to compile a PyTorch nn.Module to a .pte binary
1. torch.export
2. exir.to_edge
3. exir.to_executorch
4. Save the result as a .pte binary to be consumed by the ExecuTorch runtime.

导出代码示例:

import torch
from torch.export import export
from executorch.exir import to_edge

# Start with a PyTorch model that adds two input tensors (matrices)
class Add(torch.nn.Module):
  def __init__(self):
    super(Add, self).__init__()

  def forward(self, x: torch.Tensor, y: torch.Tensor):
      return x + y

# 1. torch.export: Defines the program with the ATen operator set.
aten_dialect = export(Add(), (torch.ones(1), torch.ones(1)))

# 2. to_edge: Make optimizations for Edge devices
edge_program = to_edge(aten_dialect)

# 3. to_executorch: Convert the graph to an ExecuTorch program
executorch_program = edge_program.to_executorch()

# 4. Save the compiled .pte program
with open("add.pte", "wb") as file:
    file.write(executorch_program.buffer)

Run Your Program:

executor_runner --model_path ./add.pte

主页

索引

模块索引

搜索页面