6.4.4. Usage¶
LoRA Adapters¶
instantiate the base model and pass in the enable_lora=True flag:
from vllm import LLM, SamplingParams
from vllm.lora.request import LoRARequest
llm = LLM(model="meta-llama/Llama-2-7b-hf", enable_lora=True)
submit the prompts and call llm.generate with the lora_request parameter:
from huggingface_hub import snapshot_download
sql_lora_path = snapshot_download(repo_id="yard1/llama-2-7b-sql-lora-test")
sampling_params = SamplingParams(
temperature=0,
max_tokens=256,
stop=["[/assistant]"]
)
prompts = [
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_74 (icao VARCHAR, airport VARCHAR)\n\n question: Name the ICAO for lilongwe international airport [/user] [assistant]",
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_11 (nationality VARCHAR, elector VARCHAR)\n\n question: When Anchero Pantaleone was the elector what is under nationality? [/user] [assistant]",
]
# LoRARequest 参数
# 1. a human identifiable name
# 2. a globally unique ID
# 3. path to the LoRA adapter
outputs = llm.generate(
prompts,
sampling_params,
lora_request=LoRARequest("sql_adapter", 1, sql_lora_path)
)
Serving LoRA Adapters¶
specify each LoRA module when we kickoff the server:
vllm serve meta-llama/Llama-2-7b-hf \
--enable-lora \
--lora-modules sql-lora=$HOME/.cache/huggingface/hub/models--yard1--llama-2-7b-sql-lora-test/snapshots/0dfa347e8877a4d4ed19ee56c140fa518470028c/
请求:
curl http://localhost:8000/v1/completions \
-H "Content-Type: application/json" \
-d '{
"model": "sql-lora",
"prompt": "San Francisco is a",
"max_tokens": 7,
"temperature": 0
}' | jq
Dynamically serving LoRA Adapters¶
警告
Note: Enabling this feature in production environments is risky as user may participate model adapter management.
To enable dynamic LoRA loading and unloading:
export VLLM_ALLOW_RUNTIME_LORA_UPDATING=True
request to load a LoRA adapter:
curl -X POST http://localhost:8000/v1/load_lora_adapter \
-H "Content-Type: application/json" \
-d '{
"lora_name": "sql_adapter",
"lora_path": "/path/to/sql-lora-adapter"
}'
request to unload a LoRA adapter:
curl -X POST http://localhost:8000/v1/unload_lora_adapter \
-H "Content-Type: application/json" \
-d '{
"lora_name": "sql_adapter"
}'
New format for –lora-modules¶
provide LoRA modules via key-value pair:
--lora-modules sql-lora=$HOME/.cache/huggingface/hub/models--yard1--llama-2-7b-sql-lora-test/snapshots/0dfa347e8877a4d4ed19ee56c140fa518470028c/
specify a base_model_name
alongside the name and path using JSON format:
--lora-modules '{"name": "sql-lora", "path": "/path/to/lora", "base_model_name": "meta-llama/Llama-2-7b"}'
Lora model lineage in model card¶
$ curl http://localhost:8000/v1/models
{
"object": "list",
"data": [
{
"id": "meta-llama/Llama-2-7b-hf",
"object": "model",
"created": 1715644056,
"owned_by": "vllm",
"root": "~/.cache/huggingface/hub/models--meta-llama--Llama-2-7b-hf/snapshots/01c7f73d771dfac7d292323805ebc428287df4f9/",
"parent": null,
"permission": [
{
.....
}
]
},
{
"id": "sql-lora",
"object": "model",
"created": 1715644056,
"owned_by": "vllm",
"root": "~/.cache/huggingface/hub/models--yard1--llama-2-7b-sql-lora-test/snapshots/0dfa347e8877a4d4ed19ee56c140fa518470028c/",
"parent": meta-llama/Llama-2-7b-hf,
"permission": [
{
....
}
]
}
]
}
Multimodal Inputs¶
Image¶
llm = LLM(model="llava-hf/llava-1.5-7b-hf")
# Refer to the HuggingFace repo for the correct format to use
prompt = "USER: <image>\nWhat is the content of this image?\nASSISTANT:"
# Load the image using PIL.Image
image = PIL.Image.open(...)
# Single prompt inference
outputs = llm.generate({
"prompt": prompt,
"multi_modal_data": {"image": image},
})
for o in outputs:
generated_text = o.outputs[0].text
print(generated_text)
# Batch inference
image_1 = PIL.Image.open(...)
image_2 = PIL.Image.open(...)
outputs = llm.generate(
[
{
"prompt": "USER: <image>\nWhat is the content of this image?\nASSISTANT:",
"multi_modal_data": {"image": image_1},
},
{
"prompt": "USER: <image>\nWhat's the color of this image?\nASSISTANT:",
"multi_modal_data": {"image": image_2},
}
]
)
for o in outputs:
generated_text = o.outputs[0].text
print(generated_text)
multiple images:
llm = LLM(
model="microsoft/Phi-3.5-vision-instruct",
trust_remote_code=True, # Required to load Phi-3.5-vision
max_model_len=4096, # Otherwise, it may not fit in smaller GPUs
limit_mm_per_prompt={"image": 2}, # The maximum number to accept
)
# Refer to the HuggingFace repo for the correct format to use
prompt = "<|user|>\n<|image_1|>\n<|image_2|>\nWhat is the content of each image?<|end|>\n<|assistant|>\n"
# Load the images using PIL.Image
image1 = PIL.Image.open(...)
image2 = PIL.Image.open(...)
outputs = llm.generate({
"prompt": prompt,
"multi_modal_data": {
"image": [image1, image2]
},
})
for o in outputs:
generated_text = o.outputs[0].text
print(generated_text)
Multi-image input can be extended to perform video captioning:
# Specify the maximum number of frames per video to be 4. This can be changed.
llm = LLM("Qwen/Qwen2-VL-2B-Instruct", limit_mm_per_prompt={"image": 4})
# Create the request payload.
video_frames = ... # load your video making sure it only has the number of frames specified earlier.
message = {
"role": "user",
"content": [
{"type": "text", "text": "Describe this set of frames. Consider the frames to be a part of the same video."},
],
}
for i in range(len(video_frames)):
base64_image = encode_image(video_frames[i]) # base64 encoding.
new_image = {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
message["content"].append(new_image)
# Perform inference and log output.
outputs = llm.chat([message])
for o in outputs:
generated_text = o.outputs[0].text
print(generated_text)
Video¶
examples/offline_inference_vision_language.py
Audio¶
examples/offline_inference_audio_language.py
Tool Calling¶
Quickstart¶
use the llama3 tool calling chat template:
vllm serve meta-llama/Llama-3.1-8B-Instruct \
--enable-auto-tool-choice \
--tool-call-parser llama3_json \
--chat-template examples/tool_chat_template_llama3_json.jinja
request to the model:
from openai import OpenAI
import json
client = OpenAI(base_url="http://localhost:8000/v1", api_key="dummy")
def get_weather(location: str, unit: str):
return f"Getting the weather for {location} in {unit}..."
tool_functions = {"get_weather": get_weather}
tools = [{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string", "description": "City and state, e.g., 'San Francisco, CA'"},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}
},
"required": ["location", "unit"]
}
}
}]
response = client.chat.completions.create(
model=client.models.list().data[0].id,
messages=[{"role": "user", "content": "What's the weather like in San Francisco?"}],
tools=tools,
tool_choice="auto"
)
tool_call = response.choices[0].message.tool_calls[0].function
print(f"Function called: {tool_call.name}")
print(f"Arguments: {tool_call.arguments}")
print(f"Result: {get_weather(**json.loads(tool_call.arguments))}")
输出:
Function called: get_weather
Arguments: {"location": "San Francisco, CA", "unit": "fahrenheit"}
Result: Getting the weather for San Francisco, CA in fahrenheit...