主页

索引

模块索引

搜索页面

6.3.9. Evaluate

  • A library for easily evaluating machine learning models and datasets.

Tutorials

Installation

pip安装:

pip install evaluate

# check if 🤗Evaluate has been properly installed
python -c "import evaluate; print(evaluate.load('exact_match').compute(references=['hello'], predictions=['hello']))"

源码安装:

git clone https://github.com/huggingface/evaluate.git
cd evaluate
pip install -e .

A quick tour

Load:

import evaluate
accuracy = evaluate.load("accuracy")

# List available modules
>>> evaluate.list_evaluation_modules(
...   module_type="comparison",
...   include_community=False,
...   with_details=True)
[{'name': 'mcnemar', 'type': 'comparison', 'community': False, 'likes': 1},
{'name': 'exact_match', 'type': 'comparison', 'community': False, 'likes': 0}]

Module attribute:

>>> accuracy.description
Accuracy is the proportion of correct predictions among the total number of cases processed. It can be computed with:
Accuracy = (TP + TN) / (TP + TN + FP + FN)
 Where:
TP: True positive
TN: True negative
FP: False positive
FN: False negative

>>> accuracy.citation
title={Scikit-learn: Machine Learning in {P}ython},
  author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
         and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
         and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
         Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
  journal={Journal of Machine Learning Research},
  volume={12},
  pages={2825--2830},
  year={2011}
}

>>> accuracy.features
{
    'predictions': Value(dtype='int32', id=None),
    'references': Value(dtype='int32', id=None)
}

How to compute:

>>> accuracy.compute(references=[0,1,0,1], predictions=[1,0,0,1])
{'accuracy': 0.5}

How-To Guide

主页

索引

模块索引

搜索页面