3.2.6. Evaluate¶
A library for easily evaluating machine learning models and datasets.
Tutorials¶
Installation¶
pip安装:
pip install evaluate
# check if 🤗Evaluate has been properly installed
python -c "import evaluate; print(evaluate.load('exact_match').compute(references=['hello'], predictions=['hello']))"
源码安装:
git clone https://github.com/huggingface/evaluate.git
cd evaluate
pip install -e .
A quick tour¶
Load:
import evaluate
accuracy = evaluate.load("accuracy")
# List available modules
>>> evaluate.list_evaluation_modules(
... module_type="comparison",
... include_community=False,
... with_details=True)
[{'name': 'mcnemar', 'type': 'comparison', 'community': False, 'likes': 1},
{'name': 'exact_match', 'type': 'comparison', 'community': False, 'likes': 0}]
Module attribute:
>>> accuracy.description
Accuracy is the proportion of correct predictions among the total number of cases processed. It can be computed with:
Accuracy = (TP + TN) / (TP + TN + FP + FN)
Where:
TP: True positive
TN: True negative
FP: False positive
FN: False negative
>>> accuracy.citation
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
>>> accuracy.features
{
'predictions': Value(dtype='int32', id=None),
'references': Value(dtype='int32', id=None)
}
How to compute:
>>> accuracy.compute(references=[0,1,0,1], predictions=[1,0,0,1])
{'accuracy': 0.5}