AI 相关 ####### 推荐系统 ======== 1. 内容推荐 ----------- * [论文, Facebook]Bag of Tricks for Efficient Text Classification:: Facebook 开源的文本处理工具 fastText 背后原理。 可以训练词嵌入向量,文本多分类,效率和线性模型一样,效果和深度学习一样,值得拥有。 * [论文, Google]The Learning Behind Gmail Priority Inbox:: 介绍了一种基于文本和行为给用户建模的思路,是信息流推荐的早期探索,Gmail 智能邮箱背后的原理。 * Recommender Systems Handbook:: 作者:Francesco Ricci 等 这本书收录了推荐系统很多经典论文,话题涵盖非常广, 第三章专门讲内容推荐的基本原理, 第九章是一个具体的基于内容推荐系统的案例。 2. 近邻推荐 ----------- * [论文, Amazon]Amazon.com recommendations: item-to-item collaborative filtering:: 介绍 Amazon 的推荐系统原理,主要是介绍 Item-Based 协同过滤算法。 * [论文, Daniel Lemire]Slope One Predictors for Online Rating-Based Collaborative Filtering:: Slope One 算法。 * [论文, Badrul Sarwar]Item-Based Collaborative Filtering Recommendation Algorithms:: GroupLens 的研究团队对比了不同的 Item-to-Item 的推荐算法。 3. 矩阵分解 ----------- * [论文, Yehuda Koren]Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model:: 把矩阵分解和近邻模型融合在一起。 * [论文, Steffen Rendle]BPR- Bayesian Personalized Ranking from Implicit Feedback:: 更关注推荐结果的排序好坏,而不是评分预测精度,那么 BPR 模型可能是首选,本篇是出处。 * [论文, Yifan Hu]Collaborative Filtering for Implicit Feedback Datasets:: 不同于通常矩阵分解处理的都是评分数据这样的显式反馈,本文介绍一种处理点击等隐式反馈数据的矩阵分解模型。 * [论文, Yehuda Koren]Matrix Factorization Techniques For Recommender Systems:: 本文是大神 Yehuda Koren 对矩阵分解在推荐系统中的应用做的一个普及性介绍,值得一读。 * [论文, Yehuda Koren]The BellKor Solution to the Netflix Grand Prize 4. 模型融合 ----------- * Adaptive Bound Optimization for Online Convex Optimization * Ad Click Prediction: a View from the Trenches * Factorization Machines * Field-aware Factorization Machines for CTR Prediction * Practical Lessons from Predicting Clicks on Ads at Facebook * Wide & Deep Learning for Recommender Systems 5. Bandit 算法 -------------- * A Contextual-Bandit Approach to Personalized News Article Recommendation * Collaborative Filtering Bandits 6. 深度学习 ----------- * Deep Neural Networks for YouTube Recommendations * Efficient Estimation of Word Representations in Vector Space * Item2Vec: Neural Item Embedding for Collaborative Filtering * Learning Representations of Text using Neural Networks * Long Short-Term Memory * An Empirical Exploration of Recurrent Network Architectures 7. 其他实用算法 --------------- * Detecting Near-Duplicates for Web Crawling * Weighted Random Sampling over Data Streams * Weighted Sampling Without Replacement from Data Streams 工程篇 ------ * Information Seeking-Convergence of Search, Recommendations and Advertising * Overlapping Experiment Infrastructure- More, Better, Faster Experimentation * TencentRec:Real-time Stream Recommendation in Practice