优秀分析案例¶
5分钟错误率超过40%时触发报警:
status:500 | select
__topic__,
max_by(error_count, window_time)/1.0/sum(error_count) as error_ratio,
sum(error_count) as total_error
from (
select __topic__, count(*) as error_count ,
__time__ - __time__ % 300 as window_time
from log
group by __topic__, window_time
)
group by __topic__
having max_by(error_count, window_time)/1.0/sum(error_count) > 0.4
and sum(error_count) > 500
order by total_error desc limit 100
当流量暴跌时,触发报警:
统计每分钟的流量,当最近的流量出现暴跌时,触发报警。
由于在最近的一分钟内,统计的数据不是一个完整分钟的,所以,
需要除以(max( time) - min( time)) 进行归一化,统计每个分钟内的流量均值。
* |
SELECT
SUM(inflow) / (max(__time__) - min(__time__)) as inflow_per_minute,
date_trunc('minute',__time__) as minute
group by minute
按照数据区间分桶,在每个桶内计算平均延时:
* |
select
avg(latency) as latency ,
case
when originSize < 5000 then 's1'
when originSize < 20000 then 's2'
when originSize < 500000 then 's3'
when originSize < 100000000 then 's4'
else 's5'
end as os
group by os
在group by的结果中,返回百分比:
不同部门的count结果,及其所占百分比。该
query结合了子查询、窗口函数。
其中sum(c) over() 表示计算所有行的和。
* |
select
department, c*1.0/sum(c) over ()
from(
select count(1) as c, department
from log
groupby department
)
统计满足条件的个数:
在URL路径中,我们需要根据URL不同的特征,来计数,这种情况,可以使用CASE WHEN语法,
但还有个更简单的语法是count_if。
* |
select
count_if(uri like '%login') as login_num,
count_if(uri like '%register') as register_num,
date_format(date_trunc('minute', __time__), '%m-%d %H:%i') as time
group by time
order by time limit 100