Evaluate ######## * A library for easily evaluating machine learning models and datasets. Tutorials ========= Installation ------------ pip安装:: pip install evaluate # check if 🤗Evaluate has been properly installed python -c "import evaluate; print(evaluate.load('exact_match').compute(references=['hello'], predictions=['hello']))" 源码安装:: git clone https://github.com/huggingface/evaluate.git cd evaluate pip install -e . A quick tour ------------ Load:: import evaluate accuracy = evaluate.load("accuracy") # List available modules >>> evaluate.list_evaluation_modules( ... module_type="comparison", ... include_community=False, ... with_details=True) [{'name': 'mcnemar', 'type': 'comparison', 'community': False, 'likes': 1}, {'name': 'exact_match', 'type': 'comparison', 'community': False, 'likes': 0}] Module attribute:: >>> accuracy.description Accuracy is the proportion of correct predictions among the total number of cases processed. It can be computed with: Accuracy = (TP + TN) / (TP + TN + FP + FN) Where: TP: True positive TN: True negative FP: False positive FN: False negative >>> accuracy.citation title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } >>> accuracy.features { 'predictions': Value(dtype='int32', id=None), 'references': Value(dtype='int32', id=None) } How to compute:: >>> accuracy.compute(references=[0,1,0,1], predictions=[1,0,0,1]) {'accuracy': 0.5} How-To Guide ============