Ndarray 对象 ############ NumPy的ndarray:一种多维数组对象:: In [3]: import numpy as np ...: data = np.random.randn(2, 3) ...: print(data) ...: [[ 0.35775698 -1.78119191 -0.80584732] [ 2.15299456 0.04187989 -0.18685547]] #所有元素都乘以10 In [4]: print('data * 10: \n', data * 10) data * 10: [[ 3.57756982 -17.81191913 -8.05847316] [ 21.52994562 0.41879885 -1.86855466]] In [5]: print('data shape:', data.shape) ...: print('data dtype:', data.dtype) data shape: (2, 3) data dtype: float64 In [11]: print(np.zeros(10)) ...: print(np.zeros((3, 6))) ...: print(np.empty((2, 3, 2))) [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [[0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.]] [[[-2.00000000e+000 1.49457942e-154] [ 2.10077583e-312 6.79038654e-313] [ 2.22809558e-312 2.14321575e-312]] [[ 2.35541533e-312 6.79038654e-313] [ 2.22809558e-312 2.14321575e-312] [ 2.46151512e-312 2.41907520e-312]]] In [12]: print(np.arange(15)) [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14] ndarray的数据类型:: In [13]: arr1 = np.array([1, 2, 3], dtype=np.float64) ...: arr2 = np.array([1, 2, 3], dtype=np.int32) ...: ...: print(arr1.dtype) ...: print(arr2.dtype) float64 int32 .. note:: 索引和切片与内置list相同