ndarray.random ############## print(dir(nd.random)):: [ 'normal', 从均匀分布采样(uniform) 'poisson', 从泊松分布采样(poisson) 'uniform' 从正态分布采样(normal) ... ] uniform ------- 说明:: Draw random samples from a uniform distribution. 从均匀分布中抽取随机样本。 格式:: mxnet.ndarray.random.uniform(low=0, high=1, shape=_Null, dtype=_Null, ctx=None, out=None, **kwargs) 实例:: >>> mx.nd.random.uniform(0, 1) [ 0.54881352] >> mx.nd.random.uniform(0, 1, ctx=mx.gpu(0)) [ 0.92514056] >>> mx.nd.random.uniform(-1, 1, shape=(2,)) [ 0.71589124 0.08976638] >>> low = mx.nd.array([1,2,3]) >>> high = mx.nd.array([2,3,4]) >>> mx.nd.random.uniform(low, high, shape=2) [[ 1.78653979 1.93707538] [ 2.01311183 2.37081361] [ 3.30491424 3.69977832]] normal ------ 说明:: 从正态(高斯)分布中抽取随机样本。 Draw random samples from a normal (Gaussian) distribution. 格式:: normal([loc, scale, shape, dtype, ctx, out]) mxnet.ndarray.random.normal(loc=0, scale=1, shape=_Null, dtype=_Null, ctx=None, out=None, **kwargs) 参数:: 1. loc (float or NDArray, optional) – Mean (centre) of the distribution. - 均值 2. scale (float or NDArray, optional) – Standard deviation of the distribution. - 标准差 3. shape (int or tuple of ints, optional) – The number of samples to draw. - 实例数 4. dtype ({'float16', 'float32', 'float64'}, optional) – Data type of output samples. Default is ‘float32’ - 数据类型 5. ctx (Context, optional) – Device context of output. Default is current context. - Overridden by loc.context when loc is an NDArray. out (NDArray, optional) – Store output to an existing NDArray. 实例:: >>> mx.nd.random.normal(0, 1) [ 2.21220636] >>> mx.nd.random.normal(0, 1, ctx=mx.gpu(0)) [ 0.29253659] >>> mx.nd.random.normal(-1, 1, shape=(2,)) [-0.2259962 -0.51619542] >>> loc = mx.nd.array([1,2,3]) >>> scale = mx.nd.array([2,3,4]) >>> mx.nd.random.normal(loc, scale, shape=2) [[ 0.55912292 3.19566321] [ 1.91728961 2.47706747] [ 2.79666662 5.44254589]] # 标准差为1的正态分布 >>> mx.nd.random.normal(scale=1, shape=(2, 3)) [[ 1.1017746 1.1337967 1.1405879 ] [ 1.2673576 -2.0345824 -0.32537818]] randn ----- 格式:: mxnet.ndarray.random.randn(*shape, **kwargs) 实例:: >>> mx.nd.random.randn() 2.21220636 >>> mx.nd.random.randn(2, 2) [[-1.856082 -1.9768796 ] [-0.20801921 0.2444218 ]] >>> mx.nd.random.randn(2, 3, loc=5, scale=1) [[4.19962 4.8311777 5.936328 ] [5.357444 5.7793283 3.9896927]] poisson ------- 说明:: Draw random samples from a Poisson distribution. 从泊松分布中抽取随机样本。 格式:: mxnet.ndarray.random.poisson(lam=1, shape=_Null, dtype=_Null, ctx=None, out=None, **kwargs) 实例:: >>> mx.nd.random.poisson(1) [ 1.] >>> mx.nd.random.poisson(1, shape=(2,)) [ 0. 2.] >>> lam = mx.nd.array([1,2,3]) >>> mx.nd.random.poisson(lam, shape=2) [[ 1. 3.] [ 3. 2.] [ 2. 3.]]